公告:凡是在
2025 年 4 月 15 日前註冊使用 Earth Engine 的非商業專案,都必須
驗證非商業用途資格,才能繼續存取 Earth Engine。
ee.ImageCollection.getRegion
透過集合功能整理內容
你可以依據偏好儲存及分類內容。
針對 ImageCollection 中的每個 [像素、波段、圖片] 元組,輸出值陣列。輸出內容包含 ID、經度、緯度、時間和所有波段的資料列,這些資料列對應於指定區域中與每個像素相交的每張圖片。如果嘗試擷取超過 1048576 個值,就會發生錯誤。
用量 | 傳回 |
---|
ImageCollection.getRegion(geometry, scale, crs, crsTransform) | 清單 |
引數 | 類型 | 詳細資料 |
---|
這個:collection | ImageCollection | 要從中擷取資料的圖片集。 |
geometry | 幾何圖形 | 要擷取資料的區域。 |
scale | 浮點值,預設值為空值 | 以公尺為單位的投影名義比例,用於工作。 |
crs | 投影 (選用) | 要使用的投影機。如未指定,則預設為 EPSG:4326。如果除了比例之外還指定了投影,系統會將投影重新調整為指定比例。 |
crsTransform | 清單,預設值為空值 | CRS 轉換值的陣列。這是 3x2 仿射轉換的列優先順序。這個選項與縮放選項互斥,且會取代指定投影中已設定的任何變形。 |
範例
程式碼編輯器 (JavaScript)
// A Landsat 8 TOA image collection (3 months at a specific point, RGB bands).
var col = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filterBounds(ee.Geometry.Point(-90.70, 34.71))
.filterDate('2020-07-01', '2020-10-01')
.select('B[2-4]');
print('Collection', col);
// Define a region to get pixel values for. This is a small rectangle region
// that intersects 2 image pixels at 30-meter scale.
var roi = ee.Geometry.BBox(-90.496353, 34.851971, -90.495749, 34.852197);
// Display the region of interest overlaid on an image representative. Note
// the ROI intersection with 2 pixels.
var visParams = {
bands: ['B4', 'B3', 'B2'],
min: 0.128,
max: 0.163
};
Map.setCenter(-90.49605, 34.85211, 19);
Map.addLayer(col.first(), visParams, 'Image representative');
Map.addLayer(roi, {color: 'white'}, 'ROI');
// Fetch pixel-level information from all images in the collection for the
// pixels intersecting the ROI.
var pixelInfoBbox = col.getRegion({
geometry: roi,
scale: 30
});
// The result is a table (a list of lists) where the first row is column
// labels and subsequent rows are image pixels. Columns contain values for
// the image ID ('system:index'), pixel longitude and latitude, image
// observation time ('system:time_start'), and bands. In this example, note
// that there are 5 images and the region intersects 2 pixels, so n rows
// equals 11 (5 * 2 + 1). All collection images must have the same number of
// bands with the same names.
print('Extracted pixel info', pixelInfoBbox);
// The function accepts all geometry types (e.g., points, lines, polygons).
// Here, a multi-point geometry with two points is used.
var points = ee.Geometry.MultiPoint([[-90.49, 34.85], [-90.48, 34.84]]);
var pixelInfoPoints = col.getRegion({
geometry: points,
scale: 30
});
print('Point geometry example', pixelInfoPoints);
Python 設定
請參閱
Python 環境頁面,瞭解 Python API 和如何使用 geemap
進行互動式開發。
import ee
import geemap.core as geemap
Colab (Python)
# A Landsat 8 TOA image collection (3 months at a specific point, RGB bands).
col = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filterBounds(ee.Geometry.Point(-90.70, 34.71))
.filterDate('2020-07-01', '2020-10-01')
.select('B[2-4]')
)
display('Collection', col)
# Define a region to get pixel values for. This is a small rectangle region
# that intersects 2 image pixels at 30-meter scale.
roi = ee.Geometry.BBox(-90.496353, 34.851971, -90.495749, 34.852197)
# Display the region of interest overlaid on an image representative. Note
# the ROI intersection with 2 pixels.
vis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0.128, 'max': 0.163}
m = geemap.Map()
m.set_center(-90.49605, 34.85211, 19)
m.add_layer(col.first(), vis_params, 'Image representative')
m.add_layer(roi, {'color': 'white'}, 'ROI')
display(m)
# Fetch pixel-level information from all images in the collection for the
# pixels intersecting the ROI.
pixel_info_bbox = col.getRegion(geometry=roi, scale=30)
# The result is a table (a list of lists) where the first row is column
# labels and subsequent rows are image pixels. Columns contain values for
# the image ID ('system:index'), pixel longitude and latitude, image
# observation time ('system:time_start'), and bands. In this example, note
# that there are 5 images and the region intersects 2 pixels, so n rows
# equals 11 (5 * 2 + 1). All collection images must have the same number of
# bands with the same names.
display('Extracted pixel info', pixel_info_bbox)
# The function accepts all geometry types (e.g., points, lines, polygons).
# Here, a multi-point geometry with two points is used.
points = ee.Geometry.MultiPoint([[-90.49, 34.85], [-90.48, 34.84]])
pixel_info_points = col.getRegion(geometry=points, scale=30)
display('Point geometry example', pixel_info_points)
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-07-26 (世界標準時間)。
[null,null,["上次更新時間:2025-07-26 (世界標準時間)。"],[[["\u003cp\u003e\u003ccode\u003eImageCollection.getRegion()\u003c/code\u003e extracts pixel values from an ImageCollection for a specified region.\u003c/p\u003e\n"],["\u003cp\u003eThe output is a list of lists representing a table with pixel data, including ID, location, time, and band values.\u003c/p\u003e\n"],["\u003cp\u003eThe region can be defined using various geometries (e.g., points, lines, polygons).\u003c/p\u003e\n"],["\u003cp\u003eAll images in the collection must have the same number of bands and band names.\u003c/p\u003e\n"],["\u003cp\u003eExtracting more than 1,048,576 values will result in an error.\u003c/p\u003e\n"]]],["The `ImageCollection.getRegion` method extracts pixel values from an ImageCollection within a specified geometry. It returns a list containing rows of data for each \\[pixel, band, image\\] tuple, including id, longitude, latitude, time, and band values. Users define the extraction region, scale, and optionally the projection. The output format is a table where rows represent pixels and columns detail each image's data. The method accepts various geometry types but is limited to extracting 1,048,576 values per request.\n"],null,["# ee.ImageCollection.getRegion\n\nOutput an array of values for each \\[pixel, band, image\\] tuple in an ImageCollection. The output contains rows of id, lon, lat, time, and all bands for each image that intersects each pixel in the given region. Attempting to extract more than 1048576 values will result in an error.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-------------------------------------------------------------------------------|---------|\n| ImageCollection.getRegion`(geometry, `*scale* `, `*crs* `, `*crsTransform*`)` | List |\n\n| Argument | Type | Details |\n|--------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `collection` | ImageCollection | The image collection to extract data from. |\n| `geometry` | Geometry | The region over which to extract data. |\n| `scale` | Float, default: null | A nominal scale in meters of the projection to work in. |\n| `crs` | Projection, optional | The projection to work in. If unspecified, defaults to EPSG:4326. If specified in addition to scale, the projection is rescaled to the specified scale. |\n| `crsTransform` | List, default: null | The array of CRS transform values. This is a row-major ordering of a 3x2 affine transform. This option is mutually exclusive with the scale option, and will replace any transform already set on the given projection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A Landsat 8 TOA image collection (3 months at a specific point, RGB bands).\nvar col = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n .filterBounds(ee.Geometry.Point(-90.70, 34.71))\n .filterDate('2020-07-01', '2020-10-01')\n .select('B[2-4]');\nprint('Collection', col);\n\n// Define a region to get pixel values for. This is a small rectangle region\n// that intersects 2 image pixels at 30-meter scale.\nvar roi = ee.Geometry.BBox(-90.496353, 34.851971, -90.495749, 34.852197);\n\n// Display the region of interest overlaid on an image representative. Note\n// the ROI intersection with 2 pixels.\nvar visParams = {\n bands: ['B4', 'B3', 'B2'],\n min: 0.128,\n max: 0.163\n};\nMap.setCenter(-90.49605, 34.85211, 19);\nMap.addLayer(col.first(), visParams, 'Image representative');\nMap.addLayer(roi, {color: 'white'}, 'ROI');\n\n// Fetch pixel-level information from all images in the collection for the\n// pixels intersecting the ROI.\nvar pixelInfoBbox = col.getRegion({\n geometry: roi,\n scale: 30\n});\n\n// The result is a table (a list of lists) where the first row is column\n// labels and subsequent rows are image pixels. Columns contain values for\n// the image ID ('system:index'), pixel longitude and latitude, image\n// observation time ('system:time_start'), and bands. In this example, note\n// that there are 5 images and the region intersects 2 pixels, so n rows\n// equals 11 (5 * 2 + 1). All collection images must have the same number of\n// bands with the same names.\nprint('Extracted pixel info', pixelInfoBbox);\n\n// The function accepts all geometry types (e.g., points, lines, polygons).\n// Here, a multi-point geometry with two points is used.\nvar points = ee.Geometry.MultiPoint([[-90.49, 34.85], [-90.48, 34.84]]);\nvar pixelInfoPoints = col.getRegion({\n geometry: points,\n scale: 30\n});\nprint('Point geometry example', pixelInfoPoints);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# A Landsat 8 TOA image collection (3 months at a specific point, RGB bands).\ncol = (\n ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n .filterBounds(ee.Geometry.Point(-90.70, 34.71))\n .filterDate('2020-07-01', '2020-10-01')\n .select('B[2-4]')\n)\ndisplay('Collection', col)\n\n# Define a region to get pixel values for. This is a small rectangle region\n# that intersects 2 image pixels at 30-meter scale.\nroi = ee.Geometry.BBox(-90.496353, 34.851971, -90.495749, 34.852197)\n\n# Display the region of interest overlaid on an image representative. Note\n# the ROI intersection with 2 pixels.\nvis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0.128, 'max': 0.163}\nm = geemap.Map()\nm.set_center(-90.49605, 34.85211, 19)\nm.add_layer(col.first(), vis_params, 'Image representative')\nm.add_layer(roi, {'color': 'white'}, 'ROI')\ndisplay(m)\n\n# Fetch pixel-level information from all images in the collection for the\n# pixels intersecting the ROI.\npixel_info_bbox = col.getRegion(geometry=roi, scale=30)\n\n# The result is a table (a list of lists) where the first row is column\n# labels and subsequent rows are image pixels. Columns contain values for\n# the image ID ('system:index'), pixel longitude and latitude, image\n# observation time ('system:time_start'), and bands. In this example, note\n# that there are 5 images and the region intersects 2 pixels, so n rows\n# equals 11 (5 * 2 + 1). All collection images must have the same number of\n# bands with the same names.\ndisplay('Extracted pixel info', pixel_info_bbox)\n\n# The function accepts all geometry types (e.g., points, lines, polygons).\n# Here, a multi-point geometry with two points is used.\npoints = ee.Geometry.MultiPoint([[-90.49, 34.85], [-90.48, 34.84]])\npixel_info_points = col.getRegion(geometry=points, scale=30)\ndisplay('Point geometry example', pixel_info_points)\n```"]]