Anúncio: todos os projetos não comerciais registrados para usar o Earth Engine antes de
15 de abril de 2025 precisam
verificar a qualificação não comercial para manter o acesso ao Earth Engine.
ee.ImageCollection.reduceToImage
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Cria uma imagem de uma coleção de recursos aplicando um redutor às propriedades selecionadas de todos os recursos que se cruzam em cada pixel.
Uso | Retorna |
---|
ImageCollection.reduceToImage(properties, reducer) | Imagem |
Argumento | Tipo | Detalhes |
---|
isso: collection | FeatureCollection | Coleção de recursos para fazer interseção com cada pixel de saída. |
properties | Lista | Propriedades a serem selecionadas de cada recurso e transmitidas ao redutor. |
reducer | Redutor | Um Reducer para combinar as propriedades de cada recurso de interseção em um resultado final para armazenar no pixel. |
Exemplos
Editor de código (JavaScript)
var col = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
.filterDate('2021', '2022');
// Image visualization settings.
var visParams = {
bands: ['B4', 'B3', 'B2'],
min: 0.01,
max: 0.25
};
Map.addLayer(col.mean(), visParams, 'RGB mean');
// Reduce the geometry (footprint) of images in the collection to an image.
// Image property values are applied to the pixels intersecting each
// image's geometry and then a per-pixel reduction is performed according
// to the selected reducer. Here, the image cloud cover property is assigned
// to the pixels intersecting image geometry and then reduced to a single
// image representing the per-pixel mean image cloud cover.
var meanCloudCover = col.reduceToImage({
properties: ['CLOUD_COVER'],
reducer: ee.Reducer.mean()
});
Map.setCenter(-119.87, 44.76, 6);
Map.addLayer(meanCloudCover, {min: 0, max: 50}, 'Cloud cover mean');
Configuração do Python
Consulte a página
Ambiente Python para informações sobre a API Python e como usar
geemap
para desenvolvimento interativo.
import ee
import geemap.core as geemap
Colab (Python)
col = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
.filterDate('2021', '2022')
)
# Image visualization settings.
vis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0.01, 'max': 0.25}
m = geemap.Map()
m.add_layer(col.mean(), vis_params, 'RGB mean')
# Reduce the geometry (footprint) of images in the collection to an image.
# Image property values are applied to the pixels intersecting each
# image's geometry and then a per-pixel reduction is performed according
# to the selected reducer. Here, the image cloud cover property is assigned
# to the pixels intersecting image geometry and then reduced to a single
# image representing the per-pixel mean image cloud cover.
mean_cloud_cover = col.reduceToImage(
properties=['CLOUD_COVER'], reducer=ee.Reducer.mean()
)
m.set_center(-119.87, 44.76, 6)
m.add_layer(mean_cloud_cover, {'min': 0, 'max': 50}, 'Cloud cover mean')
m
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2025-07-26 UTC.
[null,null,["Última atualização 2025-07-26 UTC."],[[["\u003cp\u003e\u003ccode\u003ereduceToImage\u003c/code\u003e transforms an image collection into a single image by applying a reducer to pixel-intersecting features.\u003c/p\u003e\n"],["\u003cp\u003eIt uses specified properties from each feature within the collection for the reduction process.\u003c/p\u003e\n"],["\u003cp\u003eUsers define a reducer (e.g., mean, median) to combine intersecting feature properties into a final pixel value in the output image.\u003c/p\u003e\n"],["\u003cp\u003eThis function is helpful for tasks like calculating mean cloud cover across a collection of satellite images, as shown in the provided example.\u003c/p\u003e\n"]]],[],null,["# ee.ImageCollection.reduceToImage\n\nCreates an image from a feature collection by applying a reducer over the selected properties of all the features that intersect each pixel.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|------------------------------------------------------|---------|\n| ImageCollection.reduceToImage`(properties, reducer)` | Image |\n\n| Argument | Type | Details |\n|--------------------|-------------------|-------------------------------------------------------------------------------------------------------------|\n| this: `collection` | FeatureCollection | Feature collection to intersect with each output pixel. |\n| `properties` | List | Properties to select from each feature and pass into the reducer. |\n| `reducer` | Reducer | A Reducer to combine the properties of each intersecting feature into a final result to store in the pixel. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\nvar col = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n .filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))\n .filterDate('2021', '2022');\n\n// Image visualization settings.\nvar visParams = {\n bands: ['B4', 'B3', 'B2'],\n min: 0.01,\n max: 0.25\n};\nMap.addLayer(col.mean(), visParams, 'RGB mean');\n\n// Reduce the geometry (footprint) of images in the collection to an image.\n// Image property values are applied to the pixels intersecting each\n// image's geometry and then a per-pixel reduction is performed according\n// to the selected reducer. Here, the image cloud cover property is assigned\n// to the pixels intersecting image geometry and then reduced to a single\n// image representing the per-pixel mean image cloud cover.\nvar meanCloudCover = col.reduceToImage({\n properties: ['CLOUD_COVER'],\n reducer: ee.Reducer.mean()\n});\n\nMap.setCenter(-119.87, 44.76, 6);\nMap.addLayer(meanCloudCover, {min: 0, max: 50}, 'Cloud cover mean');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\ncol = (\n ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n .filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))\n .filterDate('2021', '2022')\n)\n\n# Image visualization settings.\nvis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0.01, 'max': 0.25}\nm = geemap.Map()\nm.add_layer(col.mean(), vis_params, 'RGB mean')\n\n# Reduce the geometry (footprint) of images in the collection to an image.\n# Image property values are applied to the pixels intersecting each\n# image's geometry and then a per-pixel reduction is performed according\n# to the selected reducer. Here, the image cloud cover property is assigned\n# to the pixels intersecting image geometry and then reduced to a single\n# image representing the per-pixel mean image cloud cover.\nmean_cloud_cover = col.reduceToImage(\n properties=['CLOUD_COVER'], reducer=ee.Reducer.mean()\n)\n\nm.set_center(-119.87, 44.76, 6)\nm.add_layer(mean_cloud_cover, {'min': 0, 'max': 50}, 'Cloud cover mean')\nm\n```"]]