ee.Kernel.chebyshev

체비쇼프 거리 (모든 차원에서 가장 큰 거리)를 기반으로 거리 커널을 생성합니다.

사용반환 값
ee.Kernel.chebyshev(radius, units, normalize, magnitude)커널
인수유형세부정보
radius부동 소수점 수생성할 커널의 반경입니다.
units문자열, 기본값: 'pixels'커널의 측정 시스템입니다 ('픽셀' 또는 '미터'). 커널이 미터로 지정된 경우 확대/축소 수준이 변경되면 크기가 조절됩니다.
normalize불리언, 기본값: false커널 값을 합계 1로 정규화합니다.
magnitude부동 소수점 수, 기본값: 1각 값을 이 금액으로 조정합니다.

코드 편집기 (JavaScript)

print('A Chebyshev distance kernel', ee.Kernel.chebyshev({radius: 3}));

/**
 * Output weights matrix
 *
 * [3, 3, 3, 3, 3, 3, 3]
 * [3, 2, 2, 2, 2, 2, 3]
 * [3, 2, 1, 1, 1, 2, 3]
 * [3, 2, 1, 0, 1, 2, 3]
 * [3, 2, 1, 1, 1, 2, 3]
 * [3, 2, 2, 2, 2, 2, 3]
 * [3, 3, 3, 3, 3, 3, 3]
 */

Python 설정

Python API 및 geemap를 사용한 대화형 개발에 관한 자세한 내용은 Python 환경 페이지를 참고하세요.

import ee
import geemap.core as geemap

Colab (Python)

from pprint import pprint

print('A Chebyshev distance kernel:')
pprint(ee.Kernel.chebyshev(**{'radius': 3}).getInfo())

#  Output weights matrix
#  [3, 3, 3, 3, 3, 3, 3]
#  [3, 2, 2, 2, 2, 2, 3]
#  [3, 2, 1, 1, 1, 2, 3]
#  [3, 2, 1, 0, 1, 2, 3]
#  [3, 2, 1, 1, 1, 2, 3]
#  [3, 2, 2, 2, 2, 2, 3]
#  [3, 3, 3, 3, 3, 3, 3]