ee.Kernel.euclidean

יצירת ליבת מרחק על סמך מרחק אוקלידי (בקו ישר).

שימושהחזרות
ee.Kernel.euclidean(radius, units, normalize, magnitude)ליבה
ארגומנטסוגפרטים
radiusמספר ממשי (float)הרדיוס של הגרעין ליצירה.
unitsמחרוזת, ברירת מחדל: 'פיקסלים'מערכת המדידה של ליבת המערכת (פיקסלים או מטרים). אם הגרעין מצוין במטרים, הגודל שלו ישתנה כשמשנים את רמת הזום.
normalizeבוליאני, ברירת מחדל: falseמנרמלים את ערכי הליבה כך שהסכום שלהם יהיה 1.
magnitudeמספר ממשי (float), ברירת מחדל: 1הכפלה של כל ערך בסכום הזה.

דוגמאות

עורך הקוד (JavaScript)

print('A Euclidean distance kernel', ee.Kernel.euclidean({radius: 3}));

/**
 * Output weights matrix (up to 1/1000 precision for brevity)
 *
 * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
 * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
 * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
 * [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
 * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
 * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
 * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
 */

הגדרת Python

מידע על Python API ועל שימוש ב-geemap לפיתוח אינטראקטיבי מופיע בדף Python Environment.

import ee
import geemap.core as geemap

Colab (Python)

from pprint import pprint

print('A Euclidean distance kernel:')
pprint(ee.Kernel.euclidean(**{'radius': 3}).getInfo())

#  Output weights matrix (up to 1/1000 precision for brevity)

#  [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
#  [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
#  [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
#  [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
#  [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
#  [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
#  [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]