ee.Kernel.euclidean

Gera um kernel de distância com base na distância euclidiana (em linha reta).

UsoRetorna
ee.Kernel.euclidean(radius, units, normalize, magnitude)Kernel
ArgumentoTipoDetalhes
radiusPonto flutuanteO raio do kernel a ser gerado.
unitsString, padrão: "pixels"O sistema de medição do kernel ("pixels" ou "metros"). Se o kernel for especificado em metros, ele será redimensionado quando o nível de zoom for alterado.
normalizeBooleano, padrão: falsoNormalizar os valores do kernel para somar 1.
magnitudePonto flutuante, padrão: 1Escala cada valor por esse montante.

Exemplos

Editor de código (JavaScript)

print('A Euclidean distance kernel', ee.Kernel.euclidean({radius: 3}));

/**
 * Output weights matrix (up to 1/1000 precision for brevity)
 *
 * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
 * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
 * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
 * [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
 * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
 * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
 * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
 */

Configuração do Python

Consulte a página Ambiente Python para informações sobre a API Python e como usar geemap para desenvolvimento interativo.

import ee
import geemap.core as geemap

Colab (Python)

from pprint import pprint

print('A Euclidean distance kernel:')
pprint(ee.Kernel.euclidean(**{'radius': 3}).getInfo())

#  Output weights matrix (up to 1/1000 precision for brevity)

#  [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
#  [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
#  [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
#  [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
#  [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
#  [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
#  [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]