ee.Kernel.euclidean

Генерирует ядро расстояния на основе евклидова (прямолинейного) расстояния.

Использование Возврат
ee.Kernel.euclidean(radius, units , normalize , magnitude ) Ядро
Аргумент Тип Подробности
radius Плавать Радиус генерируемого ядра.
units Строка, по умолчанию: «пиксели» Система измерения ядра («пиксели» или «метры»). Если ядро указано в метрах, его размер будет меняться при изменении уровня масштабирования.
normalize Логическое значение, по умолчанию: false Нормализуйте значения ядра так, чтобы сумма равнялась 1.
magnitude Плавающий, по умолчанию: 1 Масштабируйте каждое значение на эту величину.

Примеры

Редактор кода (JavaScript)

print('A Euclidean distance kernel', ee.Kernel.euclidean({radius: 3}));

/**
 * Output weights matrix (up to 1/1000 precision for brevity)
 *
 * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
 * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
 * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
 * [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
 * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
 * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
 * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
 */

Настройка Python

Информацию об API Python и использовании geemap для интерактивной разработки см. на странице «Среда Python» .

import ee
import geemap.core as geemap

Colab (Python)

from pprint import pprint

print('A Euclidean distance kernel:')
pprint(ee.Kernel.euclidean(**{'radius': 3}).getInfo())

#  Output weights matrix (up to 1/1000 precision for brevity)

#  [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
#  [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
#  [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
#  [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
#  [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
#  [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
#  [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]