Duyuru:
15 Nisan 2025'ten önce Earth Engine'i kullanmak için kaydedilen tüm ticari olmayan projelerin Earth Engine erişimini sürdürmek için
ticari olmayan uygunluğu doğrulaması gerekir.
ee.Kernel.euclidean
Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
Öklid (düz çizgi) uzaklığına dayalı bir mesafe çekirdeği oluşturur.
Kullanım | İadeler |
---|
ee.Kernel.euclidean(radius, units, normalize, magnitude) | Çekirdek |
Bağımsız Değişken | Tür | Ayrıntılar |
---|
radius | Kayan | Oluşturulacak çekirdeğin yarıçapı. |
units | Dize, varsayılan: "pixels" | Çekirdek için ölçüm sistemi ("piksel" veya "metre"). Çekirdek metre cinsinden belirtilmişse yakınlaştırma düzeyi değiştirildiğinde yeniden boyutlandırılır. |
normalize | Boole değeri, varsayılan: false | Çekirdek değerlerini toplamı 1 olacak şekilde normalleştirin. |
magnitude | Ondalık sayı, varsayılan: 1 | Her değeri bu miktarla ölçeklendirin. |
Örnekler
Kod Düzenleyici (JavaScript)
print('A Euclidean distance kernel', ee.Kernel.euclidean({radius: 3}));
/**
* Output weights matrix (up to 1/1000 precision for brevity)
*
* [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
* [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
* [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
* [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
* [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
* [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
* [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
*/
Python kurulumu
Python API'si ve etkileşimli geliştirme için geemap
kullanımı hakkında bilgi edinmek üzere
Python Ortamı sayfasına bakın.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
print('A Euclidean distance kernel:')
pprint(ee.Kernel.euclidean(**{'radius': 3}).getInfo())
# Output weights matrix (up to 1/1000 precision for brevity)
# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
# [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[[["\u003cp\u003eGenerates a kernel to weight pixels based on their straight-line distance from the center.\u003c/p\u003e\n"],["\u003cp\u003eKernel values represent the Euclidean distance from the center pixel, optionally normalized and scaled.\u003c/p\u003e\n"],["\u003cp\u003eThe radius of the kernel and units of measurement (pixels or meters) are configurable.\u003c/p\u003e\n"],["\u003cp\u003eWhen specified in meters, the kernel automatically resizes with zoom level changes.\u003c/p\u003e\n"]]],["The `ee.Kernel.euclidean` function generates a distance kernel based on Euclidean distance, returning a Kernel object. Key parameters include `radius`, determining the kernel's size; `units` (\"pixels\" or \"meters\"), dictating the measurement system; `normalize` (default: false), setting whether values sum to 1; and `magnitude` (default: 1), scaling values. An example kernel with a radius of 3 is demonstrated, illustrating the output weight matrix.\n"],null,["# ee.Kernel.euclidean\n\nGenerates a distance kernel based on Euclidean (straight-line) distance.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------------------------------|---------|\n| `ee.Kernel.euclidean(radius, `*units* `, `*normalize* `, `*magnitude*`)` | Kernel |\n\n| Argument | Type | Details |\n|-------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `radius` | Float | The radius of the kernel to generate. |\n| `units` | String, default: \"pixels\" | The system of measurement for the kernel ('pixels' or 'meters'). If the kernel is specified in meters, it will resize when the zoom-level is changed. |\n| `normalize` | Boolean, default: false | Normalize the kernel values to sum to 1. |\n| `magnitude` | Float, default: 1 | Scale each value by this amount. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\nprint('A Euclidean distance kernel', ee.Kernel.euclidean({radius: 3}));\n\n/**\n * Output weights matrix (up to 1/1000 precision for brevity)\n *\n * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]\n * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]\n * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]\n * [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]\n * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]\n * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]\n * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]\n */\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\nprint('A Euclidean distance kernel:')\npprint(ee.Kernel.euclidean(**{'radius': 3}).getInfo())\n\n# Output weights matrix (up to 1/1000 precision for brevity)\n\n# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]\n# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]\n# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]\n# [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]\n# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]\n# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]\n# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]\n```"]]