Duyuru:
15 Nisan 2025'ten önce Earth Engine'i kullanmak için kaydedilen tüm ticari olmayan projelerin erişimlerini sürdürebilmeleri için
ticari olmayan uygunluklarını doğrulamaları gerekir. 26 Eylül 2025'e kadar doğrulama yapmazsanız erişiminiz bekletilebilir.
ee.Kernel.euclidean
Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
Öklid (düz çizgi) uzaklığına dayalı bir mesafe çekirdeği oluşturur.
Kullanım | İadeler |
---|
ee.Kernel.euclidean(radius, units, normalize, magnitude) | Çekirdek |
Bağımsız Değişken | Tür | Ayrıntılar |
---|
radius | Kayan | Oluşturulacak çekirdeğin yarıçapı. |
units | Dize, varsayılan: "pixels" | Çekirdek için ölçüm sistemi ("piksel" veya "metre"). Çekirdek metre cinsinden belirtilmişse yakınlaştırma düzeyi değiştirildiğinde yeniden boyutlandırılır. |
normalize | Boole değeri, varsayılan: false | Çekirdek değerlerini toplamı 1 olacak şekilde normalleştirin. |
magnitude | Ondalık sayı, varsayılan: 1 | Her değeri bu miktarla ölçeklendirin. |
Örnekler
Kod Düzenleyici (JavaScript)
print('A Euclidean distance kernel', ee.Kernel.euclidean({radius: 3}));
/**
* Output weights matrix (up to 1/1000 precision for brevity)
*
* [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
* [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
* [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
* [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
* [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
* [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
* [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
*/
Python kurulumu
Python API'si ve etkileşimli geliştirme için geemap
kullanımı hakkında bilgi edinmek üzere
Python Ortamı sayfasına bakın.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
print('A Euclidean distance kernel:')
pprint(ee.Kernel.euclidean(**{'radius': 3}).getInfo())
# Output weights matrix (up to 1/1000 precision for brevity)
# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
# [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[],["The `ee.Kernel.euclidean` function generates a distance kernel based on Euclidean distance, returning a Kernel object. Key parameters include `radius`, determining the kernel's size; `units` (\"pixels\" or \"meters\"), dictating the measurement system; `normalize` (default: false), setting whether values sum to 1; and `magnitude` (default: 1), scaling values. An example kernel with a radius of 3 is demonstrated, illustrating the output weight matrix.\n"]]