공지사항:
2025년 4월 15일 전에 Earth Engine 사용을 위해 등록된 모든 비상업용 프로젝트는 Earth Engine 액세스를 유지하기 위해
비상업용 자격 요건을 인증해야 합니다.
ee.Kernel.gaussian
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
샘플링된 연속 가우스를 기반으로 가우스 커널을 생성합니다.
사용 | 반환 값 |
---|
ee.Kernel.gaussian(radius, sigma, units, normalize, magnitude) | 커널 |
인수 | 유형 | 세부정보 |
---|
radius | 부동 소수점 수 | 생성할 커널의 반경입니다. |
sigma | 부동 소수점 수, 기본값: 1 | 가우시안 함수의 표준 편차 (반지름과 동일한 단위)입니다. |
units | 문자열, 기본값: 'pixels' | 커널의 측정 시스템입니다 ('픽셀' 또는 '미터'). 커널이 미터로 지정된 경우 확대/축소 수준이 변경되면 크기가 조절됩니다. |
normalize | 불리언, 기본값: true | 커널 값을 합계 1로 정규화합니다. |
magnitude | 부동 소수점 수, 기본값: 1 | 각 값을 이 금액으로 조정합니다. |
예
코드 편집기 (JavaScript)
print('A Gaussian kernel', ee.Kernel.gaussian({radius: 3}));
/**
* Output weights matrix (up to 1/1000 precision for brevity)
*
* [0.002, 0.013, 0.021, 0.013, 0.002]
* [0.013, 0.059, 0.098, 0.059, 0.013]
* [0.021, 0.098, 0.162, 0.098, 0.021]
* [0.013, 0.059, 0.098, 0.059, 0.013]
* [0.002, 0.013, 0.021, 0.013, 0.002]
*/
Python 설정
Python API 및 geemap
를 사용한 대화형 개발에 관한 자세한 내용은
Python 환경 페이지를 참고하세요.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
print('A Gaussian kernel:')
pprint(ee.Kernel.gaussian(**{'radius': 3}).getInfo())
# Output weights matrix (up to 1/1000 precision for brevity)
# [0.002, 0.013, 0.021, 0.013, 0.002]
# [0.013, 0.059, 0.098, 0.059, 0.013]
# [0.021, 0.098, 0.162, 0.098, 0.021]
# [0.013, 0.059, 0.098, 0.059, 0.013]
# [0.002, 0.013, 0.021, 0.013, 0.002]
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-29(UTC)
[null,null,["최종 업데이트: 2025-07-29(UTC)"],[[["\u003cp\u003eThe \u003ccode\u003eee.Kernel.gaussian\u003c/code\u003e function generates a Gaussian kernel, which is essentially a matrix of weights used for image processing, derived from a continuous Gaussian distribution.\u003c/p\u003e\n"],["\u003cp\u003eUsers can customize the kernel by defining its radius, standard deviation (\u003ccode\u003esigma\u003c/code\u003e), units (pixels or meters), normalization, and magnitude (scaling factor).\u003c/p\u003e\n"],["\u003cp\u003eBy default, the kernel is normalized, meaning the sum of its values equals 1, and has a magnitude of 1, applying no scaling to the pixel values.\u003c/p\u003e\n"],["\u003cp\u003eThe generated Gaussian kernel can be applied to imagery to perform various operations such as blurring or smoothing, as demonstrated in the example code snippets.\u003c/p\u003e\n"]]],["The core function is to generate a Gaussian kernel using `ee.Kernel.gaussian()`. This function requires a `radius` and accepts optional parameters like `sigma` (standard deviation), `units` ('pixels' or 'meters'), `normalize` (kernel value normalization), and `magnitude` (scaling factor). The output is a kernel object. Example code demonstrates how to create and print a Gaussian kernel in JavaScript and Python, including the resulting weights matrix.\n"],null,["# ee.Kernel.gaussian\n\nGenerates a Gaussian kernel from a sampled continuous Gaussian.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-------------------------------------------------------------------------------------|---------|\n| `ee.Kernel.gaussian(radius, `*sigma* `, `*units* `, `*normalize* `, `*magnitude*`)` | Kernel |\n\n| Argument | Type | Details |\n|-------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `radius` | Float | The radius of the kernel to generate. |\n| `sigma` | Float, default: 1 | Standard deviation of the Gaussian function (same units as radius). |\n| `units` | String, default: \"pixels\" | The system of measurement for the kernel ('pixels' or 'meters'). If the kernel is specified in meters, it will resize when the zoom-level is changed. |\n| `normalize` | Boolean, default: true | Normalize the kernel values to sum to 1. |\n| `magnitude` | Float, default: 1 | Scale each value by this amount. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\nprint('A Gaussian kernel', ee.Kernel.gaussian({radius: 3}));\n\n/**\n * Output weights matrix (up to 1/1000 precision for brevity)\n *\n * [0.002, 0.013, 0.021, 0.013, 0.002]\n * [0.013, 0.059, 0.098, 0.059, 0.013]\n * [0.021, 0.098, 0.162, 0.098, 0.021]\n * [0.013, 0.059, 0.098, 0.059, 0.013]\n * [0.002, 0.013, 0.021, 0.013, 0.002]\n */\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\nprint('A Gaussian kernel:')\npprint(ee.Kernel.gaussian(**{'radius': 3}).getInfo())\n\n# Output weights matrix (up to 1/1000 precision for brevity)\n\n# [0.002, 0.013, 0.021, 0.013, 0.002]\n# [0.013, 0.059, 0.098, 0.059, 0.013]\n# [0.021, 0.098, 0.162, 0.098, 0.021]\n# [0.013, 0.059, 0.098, 0.059, 0.013]\n# [0.002, 0.013, 0.021, 0.013, 0.002]\n```"]]