Объявление : Все некоммерческие проекты, зарегистрированные для использования Earth Engine до
15 апреля 2025 года, должны
подтвердить некоммерческое право на сохранение доступа к Earth Engine.
ee.Kernel.gaussian
Оптимизируйте свои подборки
Сохраняйте и классифицируйте контент в соответствии со своими настройками.
Генерирует гауссово ядро из выборки непрерывного гауссовского распределения.
Использование | Возврат | ee.Kernel.gaussian(radius, sigma , units , normalize , magnitude ) | Ядро |
Аргумент | Тип | Подробности | radius | Плавать | Радиус генерируемого ядра. |
sigma | Плавающий, по умолчанию: 1 | Стандартное отклонение гауссовой функции (в тех же единицах, что и радиус). |
units | Строка, по умолчанию: «пиксели» | Система измерения ядра («пиксели» или «метры»). Если ядро указано в метрах, его размер будет меняться при изменении уровня масштабирования. |
normalize | Логическое значение, по умолчанию: true | Нормализуйте значения ядра так, чтобы сумма равнялась 1. |
magnitude | Плавающий, по умолчанию: 1 | Масштабируйте каждое значение на эту величину. |
Примеры
Редактор кода (JavaScript)
print('A Gaussian kernel', ee.Kernel.gaussian({radius: 3}));
/**
* Output weights matrix (up to 1/1000 precision for brevity)
*
* [0.002, 0.013, 0.021, 0.013, 0.002]
* [0.013, 0.059, 0.098, 0.059, 0.013]
* [0.021, 0.098, 0.162, 0.098, 0.021]
* [0.013, 0.059, 0.098, 0.059, 0.013]
* [0.002, 0.013, 0.021, 0.013, 0.002]
*/
Настройка Python
Информацию об API Python и использовании geemap
для интерактивной разработки см. на странице «Среда Python» .
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
print('A Gaussian kernel:')
pprint(ee.Kernel.gaussian(**{'radius': 3}).getInfo())
# Output weights matrix (up to 1/1000 precision for brevity)
# [0.002, 0.013, 0.021, 0.013, 0.002]
# [0.013, 0.059, 0.098, 0.059, 0.013]
# [0.021, 0.098, 0.162, 0.098, 0.021]
# [0.013, 0.059, 0.098, 0.059, 0.013]
# [0.002, 0.013, 0.021, 0.013, 0.002]
Если не указано иное, контент на этой странице предоставляется по лицензии Creative Commons "С указанием авторства 4.0", а примеры кода – по лицензии Apache 2.0. Подробнее об этом написано в правилах сайта. Java – это зарегистрированный товарный знак корпорации Oracle и ее аффилированных лиц.
Последнее обновление: 2025-07-29 UTC.
[null,null,["Последнее обновление: 2025-07-29 UTC."],[[["\u003cp\u003eThe \u003ccode\u003eee.Kernel.gaussian\u003c/code\u003e function generates a Gaussian kernel, which is essentially a matrix of weights used for image processing, derived from a continuous Gaussian distribution.\u003c/p\u003e\n"],["\u003cp\u003eUsers can customize the kernel by defining its radius, standard deviation (\u003ccode\u003esigma\u003c/code\u003e), units (pixels or meters), normalization, and magnitude (scaling factor).\u003c/p\u003e\n"],["\u003cp\u003eBy default, the kernel is normalized, meaning the sum of its values equals 1, and has a magnitude of 1, applying no scaling to the pixel values.\u003c/p\u003e\n"],["\u003cp\u003eThe generated Gaussian kernel can be applied to imagery to perform various operations such as blurring or smoothing, as demonstrated in the example code snippets.\u003c/p\u003e\n"]]],["The core function is to generate a Gaussian kernel using `ee.Kernel.gaussian()`. This function requires a `radius` and accepts optional parameters like `sigma` (standard deviation), `units` ('pixels' or 'meters'), `normalize` (kernel value normalization), and `magnitude` (scaling factor). The output is a kernel object. Example code demonstrates how to create and print a Gaussian kernel in JavaScript and Python, including the resulting weights matrix.\n"],null,["# ee.Kernel.gaussian\n\nGenerates a Gaussian kernel from a sampled continuous Gaussian.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-------------------------------------------------------------------------------------|---------|\n| `ee.Kernel.gaussian(radius, `*sigma* `, `*units* `, `*normalize* `, `*magnitude*`)` | Kernel |\n\n| Argument | Type | Details |\n|-------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `radius` | Float | The radius of the kernel to generate. |\n| `sigma` | Float, default: 1 | Standard deviation of the Gaussian function (same units as radius). |\n| `units` | String, default: \"pixels\" | The system of measurement for the kernel ('pixels' or 'meters'). If the kernel is specified in meters, it will resize when the zoom-level is changed. |\n| `normalize` | Boolean, default: true | Normalize the kernel values to sum to 1. |\n| `magnitude` | Float, default: 1 | Scale each value by this amount. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\nprint('A Gaussian kernel', ee.Kernel.gaussian({radius: 3}));\n\n/**\n * Output weights matrix (up to 1/1000 precision for brevity)\n *\n * [0.002, 0.013, 0.021, 0.013, 0.002]\n * [0.013, 0.059, 0.098, 0.059, 0.013]\n * [0.021, 0.098, 0.162, 0.098, 0.021]\n * [0.013, 0.059, 0.098, 0.059, 0.013]\n * [0.002, 0.013, 0.021, 0.013, 0.002]\n */\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\nprint('A Gaussian kernel:')\npprint(ee.Kernel.gaussian(**{'radius': 3}).getInfo())\n\n# Output weights matrix (up to 1/1000 precision for brevity)\n\n# [0.002, 0.013, 0.021, 0.013, 0.002]\n# [0.013, 0.059, 0.098, 0.059, 0.013]\n# [0.021, 0.098, 0.162, 0.098, 0.021]\n# [0.013, 0.059, 0.098, 0.059, 0.013]\n# [0.002, 0.013, 0.021, 0.013, 0.002]\n```"]]