ee.Kernel.gaussian

從取樣的連續高斯函式產生高斯核心。

用量傳回
ee.Kernel.gaussian(radius, sigma, units, normalize, magnitude)核心
引數類型詳細資料
radius浮點值要產生的核心半徑。
sigma浮點值,預設值為 1高斯函式的標準差 (與半徑的單位相同)。
units字串,預設值為「pixels」核心的測量系統 (「像素」或「公尺」)。如果核心是以公尺為單位指定,則會在變更縮放層級時調整大小。
normalize布林值,預設值為 true將核心值正規化為總和為 1。
magnitude浮點值,預設值為 1將每個值按此金額縮放。

範例

程式碼編輯器 (JavaScript)

print('A Gaussian kernel', ee.Kernel.gaussian({radius: 3}));

/**
 * Output weights matrix (up to 1/1000 precision for brevity)
 *
 * [0.002, 0.013, 0.021, 0.013, 0.002]
 * [0.013, 0.059, 0.098, 0.059, 0.013]
 * [0.021, 0.098, 0.162, 0.098, 0.021]
 * [0.013, 0.059, 0.098, 0.059, 0.013]
 * [0.002, 0.013, 0.021, 0.013, 0.002]
 */

Python 設定

請參閱 Python 環境頁面,瞭解 Python API 和如何使用 geemap 進行互動式開發。

import ee
import geemap.core as geemap

Colab (Python)

from pprint import pprint

print('A Gaussian kernel:')
pprint(ee.Kernel.gaussian(**{'radius': 3}).getInfo())

#  Output weights matrix (up to 1/1000 precision for brevity)

#  [0.002, 0.013, 0.021, 0.013, 0.002]
#  [0.013, 0.059, 0.098, 0.059, 0.013]
#  [0.021, 0.098, 0.162, 0.098, 0.021]
#  [0.013, 0.059, 0.098, 0.059, 0.013]
#  [0.002, 0.013, 0.021, 0.013, 0.002]