ee.Kernel.manhattan

根據直線 (城市街區) 距離產生距離核心。

用量傳回
ee.Kernel.manhattan(radius, units, normalize, magnitude)核心
引數類型詳細資料
radius浮點值要產生的核心半徑。
units字串,預設值為「pixels」核心的測量系統 (「像素」或「公尺」)。如果核心是以公尺為單位指定,則會在變更縮放層級時調整大小。
normalize布林值,預設值為 false將核心值正規化為總和為 1。
magnitude浮點值,預設值為 1將每個值按此金額縮放。

範例

程式碼編輯器 (JavaScript)

print('A Manhattan kernel', ee.Kernel.manhattan({radius: 3}));

/**
 * Output weights matrix
 *
 * [6, 5, 4, 3, 4, 5, 6]
 * [5, 4, 3, 2, 3, 4, 5]
 * [4, 3, 2, 1, 2, 3, 4]
 * [3, 2, 1, 0, 1, 2, 3]
 * [4, 3, 2, 1, 2, 3, 4]
 * [5, 4, 3, 2, 3, 4, 5]
 * [6, 5, 4, 3, 4, 5, 6]
 */

Python 設定

請參閱 Python 環境頁面,瞭解 Python API 和如何使用 geemap 進行互動式開發。

import ee
import geemap.core as geemap

Colab (Python)

from pprint import pprint

print('A Manhattan kernel:')
pprint(ee.Kernel.manhattan(**{'radius': 3}).getInfo())

#  Output weights matrix

#  [6, 5, 4, 3, 4, 5, 6]
#  [5, 4, 3, 2, 3, 4, 5]
#  [4, 3, 2, 1, 2, 3, 4]
#  [3, 2, 1, 0, 1, 2, 3]
#  [4, 3, 2, 1, 2, 3, 4]
#  [5, 4, 3, 2, 3, 4, 5]
#  [6, 5, 4, 3, 4, 5, 6]