AI-generated Key Takeaways
- 
          The ee.Kernel.roberts()function generates a 2x2 Roberts edge-detection kernel.
- 
          The magnitudeargument scales the kernel values, and thenormalizeargument can normalize them to sum to 1.
- 
          The examples show how to use the ee.Kernel.roberts()function in both the Code Editor (JavaScript) and Colab (Python).
| Usage | Returns | 
|---|---|
| ee.Kernel.roberts(magnitude, normalize) | Kernel | 
| Argument | Type | Details | 
|---|---|---|
| magnitude | Float, default: 1 | Scale each value by this amount. | 
| normalize | Boolean, default: false | Normalize the kernel values to sum to 1. | 
Examples
Code Editor (JavaScript)
print('A Roberts kernel', ee.Kernel.roberts()); /** * Output weights matrix; center is position [1,1] * * [1, 0] * [0, -1] */
import ee import geemap.core as geemap
Colab (Python)
display('A Roberts kernel:', ee.Kernel.roberts()) # Output weights matrix; center is position [1,1] # [1, 0] # [0, -1]