Annuncio: tutti i progetti non commerciali registrati per l'utilizzo di Earth Engine prima del
15 aprile 2025 devono
verificare l'idoneità non commerciale per mantenere l'accesso a Earth Engine.
Export.classifier.toAsset
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Crea un'attività batch per esportare un ee.Classifier come asset Earth Engine.
Supportato solo per ee.Classifier.smileRandomForest, ee.Classifier.smileCart, ee.Classifier.DecisionTree ed ee.Classifier.DecisionTreeEnsemble.
Utilizzo | Resi |
---|
Export.classifier.toAsset(classifier, description, assetId, priority) | |
Argomento | Tipo | Dettagli |
---|
classifier | ComputedObject | Il classificatore da esportare. |
description | Stringa, facoltativa | Un nome leggibile dell'attività. Il valore predefinito è "myExportClassifierTask". |
assetId | Stringa, facoltativa | L'ID della risorsa di destinazione. |
priority | Numero (facoltativo) | La priorità dell'attività all'interno del progetto. Le attività con priorità più elevata vengono pianificate prima. Deve essere un numero intero compreso tra 0 e 9999. Il valore predefinito è 100. |
Esempi
Editor di codice (JavaScript)
// First gather the training data for a random forest classifier.
// Let's use MCD12Q1 yearly landcover for the labels.
var landcover = ee.ImageCollection('MODIS/061/MCD12Q1')
.filterDate('2022-01-01', '2022-12-31')
.first()
.select('LC_Type1');
// A region of interest for training our classifier.
var region = ee.Geometry.BBox(17.33, 36.07, 26.13, 43.28);
// Training features will be based on a Landsat 8 composite.
var l8 = ee.ImageCollection('LANDSAT/LC08/C02/T1')
.filterBounds(region)
.filterDate('2022-01-01', '2023-01-01');
// Draw the Landsat composite, visualizing true color bands.
var landsatComposite = ee.Algorithms.Landsat.simpleComposite({
collection: l8,
asFloat: true
});
Map.addLayer(landsatComposite, {
min: 0,
max: 0.3,
bands: ['B3', 'B2', 'B1']
}, 'Landsat composite');
// Make a training dataset by sampling the stacked images.
var training = landcover.addBands(landsatComposite).sample({
region: region,
scale: 30,
// With export to Classifier we can bump this higher to say 10,000.
numPixels: 1000
});
var classifier = ee.Classifier.smileRandomForest({
// We can also increase the number of trees higher to ~100 if needed.
numberOfTrees: 3
}).train({features: training, classProperty: 'LC_Type1'});
// Create an export classifier task to run.
var assetId = 'projects/<project-name>/assets/<asset-name>'; // <> modify these
Export.classifier.toAsset({
classifier: classifier,
description: 'classifier_export',
assetId: assetId
});
// Load the classifier after the export finishes and visualize.
var savedClassifier = ee.Classifier.load(assetId)
var landcoverPalette = '05450a,086a10,54a708,78d203,009900,c6b044,dcd159,' +
'dade48,fbff13,b6ff05,27ff87,c24f44,a5a5a5,ff6d4c,69fff8,f9ffa4,1c0dff';
var landcoverVisualization = {
palette: landcoverPalette,
min: 0,
max: 16,
format: 'png'
};
Map.addLayer(
landsatComposite.classify(savedClassifier),
landcoverVisualization,
'Upsampled landcover, saved');
Configurazione di Python
Per informazioni sull'API Python e sull'utilizzo di geemap
per lo sviluppo interattivo, consulta la pagina
Ambiente Python.
import ee
import geemap.core as geemap
Colab (Python)
# First gather the training data for a random forest classifier.
# Let's use MCD12Q1 yearly landcover for the labels.
landcover = (ee.ImageCollection('MODIS/061/MCD12Q1')
.filterDate('2022-01-01', '2022-12-31')
.first()
.select('LC_Type1'))
# A region of interest for training our classifier.
region = ee.Geometry.BBox(17.33, 36.07, 26.13, 43.28)
# Training features will be based on a Landsat 8 composite.
l8 = (ee.ImageCollection('LANDSAT/LC08/C02/T1')
.filterBounds(region)
.filterDate('2022-01-01', '2023-01-01'))
# Draw the Landsat composite, visualizing true color bands.
landsatComposite = ee.Algorithms.Landsat.simpleComposite(
collection=l8, asFloat=True)
Map = geemap.Map()
Map # Render the map in the notebook.
Map.addLayer(landsatComposite, {
'min': 0,
'max': 0.3,
'bands': ['B3', 'B2', 'B1']
}, 'Landsat composite')
# Make a training dataset by sampling the stacked images.
training = landcover.addBands(landsatComposite).sample(
region=region,
scale=30,
# With export to Classifier we can bump this higher to say 10,000.
numPixels=1000
)
# We can also increase the number of trees higher to ~100 if needed.
classifier = ee.Classifier.smileRandomForest(
numberOfTrees=3).train(features=training, classProperty='LC_Type1')
# Create an export classifier task to run.
asset_id = 'projects/<project-name>/assets/<asset-name>' # <> modify these
ee.batch.Export.classifier.toAsset(
classifier=classifier,
description='classifier_export',
assetId=asset_id
)
# Load the classifier after the export finishes and visualize.
savedClassifier = ee.Classifier.load(asset_id)
landcover_palette = [
'05450a', '086a10', '54a708', '78d203', '009900',
'c6b044', 'dcd159', 'dade48', 'fbff13', 'b6ff05',
'27ff87', 'c24f44', 'a5a5a5', 'ff6d4c', '69fff8',
'f9ffa4', '1c0dff']
landcoverVisualization = {
'palette': landcover_palette,
'min': 0,
'max': 16,
'format': 'png'
}
Map.addLayer(
landsatComposite.classify(savedClassifier),
landcoverVisualization,
'Upsampled landcover, saved')
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-25 UTC.
[null,null,["Ultimo aggiornamento 2025-07-25 UTC."],[[["\u003cp\u003eExports an Earth Engine classifier as an asset for later use.\u003c/p\u003e\n"],["\u003cp\u003eAllows customization of the export task with description, asset ID, and priority settings.\u003c/p\u003e\n"],["\u003cp\u003eProvides code examples in JavaScript and Python demonstrating the export and subsequent use of the saved classifier.\u003c/p\u003e\n"],["\u003cp\u003eUtilizes a Landsat-based composite and MODIS landcover data for training the classifier in the examples.\u003c/p\u003e\n"],["\u003cp\u003eEnables efficient saving and loading of trained classifiers within the Earth Engine platform.\u003c/p\u003e\n"]]],["This content details exporting an `ee.Classifier` as an Earth Engine asset using `Export.classifier.toAsset`. Key actions include: creating a classifier, defining a training dataset using landcover data and Landsat composites, sampling training data, and then training the classifier. The export process involves specifying the `classifier`, `description`, `assetId`, and `priority`. After export, the saved classifier can be loaded and used for classification, then visualized.\n"],null,["# Export.classifier.toAsset\n\n\u003cbr /\u003e\n\nCreates a batch task to export an ee.Classifier as an Earth Engine asset.\n\n\u003cbr /\u003e\n\nOnly supported for ee.Classifier.smileRandomForest, ee.Classifier.smileCart, ee.Classifier.DecisionTree and ee.Classifier.DecisionTreeEnsemble.\n\n| Usage | Returns |\n|---------------------------------------------------------------------------------------|---------|\n| `Export.classifier.toAsset(classifier, `*description* `, `*assetId* `, `*priority*`)` | |\n\n| Argument | Type | Details |\n|---------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|\n| `classifier` | ComputedObject | The classifier to export. |\n| `description` | String, optional | A human-readable name of the task. Defaults to \"myExportClassifierTask\". |\n| `assetId` | String, optional | The destination asset ID. |\n| `priority` | Number, optional | The priority of the task within the project. Higher priority tasks are scheduled sooner. Must be an integer between 0 and 9999. Defaults to 100. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// First gather the training data for a random forest classifier.\n// Let's use MCD12Q1 yearly landcover for the labels.\nvar landcover = ee.ImageCollection('MODIS/061/MCD12Q1')\n .filterDate('2022-01-01', '2022-12-31')\n .first()\n .select('LC_Type1');\n// A region of interest for training our classifier.\nvar region = ee.Geometry.BBox(17.33, 36.07, 26.13, 43.28);\n\n// Training features will be based on a Landsat 8 composite.\nvar l8 = ee.ImageCollection('LANDSAT/LC08/C02/T1')\n .filterBounds(region)\n .filterDate('2022-01-01', '2023-01-01');\n\n// Draw the Landsat composite, visualizing true color bands.\nvar landsatComposite = ee.Algorithms.Landsat.simpleComposite({\n collection: l8,\n asFloat: true\n});\nMap.addLayer(landsatComposite, {\n min: 0,\n max: 0.3,\n bands: ['B3', 'B2', 'B1']\n}, 'Landsat composite');\n\n// Make a training dataset by sampling the stacked images.\nvar training = landcover.addBands(landsatComposite).sample({\n region: region,\n scale: 30,\n // With export to Classifier we can bump this higher to say 10,000.\n numPixels: 1000\n});\n\nvar classifier = ee.Classifier.smileRandomForest({\n // We can also increase the number of trees higher to ~100 if needed.\n numberOfTrees: 3\n}).train({features: training, classProperty: 'LC_Type1'});\n\n// Create an export classifier task to run.\nvar assetId = 'projects/\u003cproject-name\u003e/assets/\u003casset-name\u003e'; // \u003c\u003e modify these\nExport.classifier.toAsset({\n classifier: classifier,\n description: 'classifier_export',\n assetId: assetId\n});\n\n// Load the classifier after the export finishes and visualize.\nvar savedClassifier = ee.Classifier.load(assetId)\nvar landcoverPalette = '05450a,086a10,54a708,78d203,009900,c6b044,dcd159,' +\n 'dade48,fbff13,b6ff05,27ff87,c24f44,a5a5a5,ff6d4c,69fff8,f9ffa4,1c0dff';\nvar landcoverVisualization = {\n palette: landcoverPalette,\n min: 0,\n max: 16,\n format: 'png'\n};\nMap.addLayer(\n landsatComposite.classify(savedClassifier),\n landcoverVisualization,\n 'Upsampled landcover, saved');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# First gather the training data for a random forest classifier.\n# Let's use MCD12Q1 yearly landcover for the labels.\nlandcover = (ee.ImageCollection('MODIS/061/MCD12Q1')\n .filterDate('2022-01-01', '2022-12-31')\n .first()\n .select('LC_Type1'))\n\n# A region of interest for training our classifier.\nregion = ee.Geometry.BBox(17.33, 36.07, 26.13, 43.28)\n\n# Training features will be based on a Landsat 8 composite.\nl8 = (ee.ImageCollection('LANDSAT/LC08/C02/T1')\n .filterBounds(region)\n .filterDate('2022-01-01', '2023-01-01'))\n\n# Draw the Landsat composite, visualizing true color bands.\nlandsatComposite = ee.Algorithms.Landsat.simpleComposite(\n collection=l8, asFloat=True)\n\nMap = geemap.Map()\nMap # Render the map in the notebook.\nMap.addLayer(landsatComposite, {\n 'min': 0,\n 'max': 0.3,\n 'bands': ['B3', 'B2', 'B1']\n}, 'Landsat composite')\n\n# Make a training dataset by sampling the stacked images.\ntraining = landcover.addBands(landsatComposite).sample(\n region=region,\n scale=30,\n # With export to Classifier we can bump this higher to say 10,000.\n numPixels=1000\n)\n\n# We can also increase the number of trees higher to ~100 if needed.\nclassifier = ee.Classifier.smileRandomForest(\n numberOfTrees=3).train(features=training, classProperty='LC_Type1')\n\n# Create an export classifier task to run.\nasset_id = 'projects/\u003cproject-name\u003e/assets/\u003casset-name\u003e' # \u003c\u003e modify these\nee.batch.Export.classifier.toAsset(\n classifier=classifier,\n description='classifier_export',\n assetId=asset_id\n)\n\n# Load the classifier after the export finishes and visualize.\nsavedClassifier = ee.Classifier.load(asset_id)\nlandcover_palette = [\n '05450a', '086a10', '54a708', '78d203', '009900',\n 'c6b044', 'dcd159', 'dade48', 'fbff13', 'b6ff05',\n '27ff87', 'c24f44', 'a5a5a5', 'ff6d4c', '69fff8',\n 'f9ffa4', '1c0dff']\nlandcoverVisualization = {\n 'palette': landcover_palette,\n 'min': 0,\n 'max': 16,\n 'format': 'png'\n}\nMap.addLayer(\n landsatComposite.classify(savedClassifier),\n landcoverVisualization,\n 'Upsampled landcover, saved')\n```"]]