ee.Algorithms.Image.Segmentation.SNIC
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Superpixel-Clustering basierend auf SNIC (Simple Non-Iterative Clustering). Gibt ein Band mit Cluster-IDs und die Durchschnittswerte pro Cluster für jedes der Eingabebänder aus. Wenn das Bild „seeds“ nicht als Eingabe bereitgestellt wird, enthält die Ausgabe ein „seeds“-Band mit den generierten Seed-Positionen. Siehe: Achanta, Radhakrishna und Susstrunk, Sabine, „Superpixels and Polygons using Simple Non-Iterative Clustering“, CVPR, 2017.
Nutzung | Ausgabe |
---|
ee.Algorithms.Image.Segmentation.SNIC(image, size, compactness, connectivity, neighborhoodSize, seeds) | Bild |
Argument | Typ | Details |
---|
image | Bild | Das Eingabebild für das Clustering. |
size | Ganzzahl, Standard: 5 | Der Abstand zwischen den Superpixel-Ausgangspositionen in Pixeln. Wenn ein „Seed“-Bild bereitgestellt wird, wird kein Raster erstellt. |
compactness | Gleitkommazahl, Standardwert: 1 | Kompaktheitsfaktor. Bei größeren Werten sind die Cluster kompakter (quadratisch). Wenn Sie diesen Wert auf 0 setzen, wird die Gewichtung nach räumlicher Distanz deaktiviert. |
connectivity | Ganzzahl, Standard: 8 | Konnektivität. Entweder 4 oder 8. |
neighborhoodSize | Ganzzahl, Standard: null | Größe der Nachbarschaft von Kacheln (um Artefakte an Kachelgrenzen zu vermeiden). Der Standardwert ist 2 × Größe. |
seeds | Bild, Standardwert: null | Wenn angegeben, werden alle Pixel mit einem Wert ungleich null als Ausgangspunkte verwendet. Pixel, die sich berühren (wie durch „connectivity“ angegeben), gehören zum selben Cluster. |
Beispiele
Code-Editor (JavaScript)
// Note that the compactness and size parameters can have a significant impact
// on the result. They must be adjusted to meet image-specific characteristics
// and patterns, typically through trial. Pixel scale (map zoom level) is also
// important to consider. When exploring interactively through map tile
// visualization, the segmentation result it dependent on zoom level. If you
// need to evaluate the result at a specific scale, call .reproject() on the
// result, but do so with caution because it overrides the default scaling
// behavior that makes tile computation fast and efficient.
// Load a NAIP image for a neighborhood in Las Vegas.
var naip = ee.Image('USDA/NAIP/DOQQ/m_3611554_sw_11_1_20170613');
// Apply the SNIC algorithm to the image.
var snic = ee.Algorithms.Image.Segmentation.SNIC({
image: naip,
size: 30,
compactness: 0.1,
connectivity: 8,
});
// Display the original NAIP image as RGB.
// Lock map zoom to maintain the desired scale of the segmentation computation.
Map.setLocked(false, 18, 18);
Map.setCenter(-115.32053, 36.182016, 18);
Map.addLayer(naip, null, 'NAIP RGB');
// Display the clusters.
Map.addLayer(snic.randomVisualizer(), null, 'Clusters');
// Display the RGB cluster means.
var visParams = {
bands: ['R_mean', 'G_mean', 'B_mean'],
min: 0,
max: 255
};
Map.addLayer(snic, visParams, 'RGB cluster means');
Python einrichten
Informationen zur Python API und zur Verwendung von geemap
für die interaktive Entwicklung finden Sie auf der Seite
Python-Umgebung.
import ee
import geemap.core as geemap
Colab (Python)
# Note that the compactness and size parameters can have a significant impact
# on the result. They must be adjusted to meet image-specific characteristics
# and patterns, typically through trial. Pixel scale (map zoom level) is also
# important to consider. When exploring interactively through map tile
# visualization, the segmentation result it dependent on zoom level. If you
# need to evaluate the result at a specific scale, call .reproject() on the
# result, but do so with caution because it overrides the default scaling
# behavior that makes tile computation fast and efficient.
# Load a NAIP image for a neighborhood in Las Vegas.
naip = ee.Image('USDA/NAIP/DOQQ/m_3611554_sw_11_1_20170613')
# Apply the SNIC algorithm to the image.
snic = ee.Algorithms.Image.Segmentation.SNIC(
image=naip, size=30, compactness=0.1, connectivity=8
)
# Display the original NAIP image as RGB.
m = geemap.Map()
m.set_center(-115.32053, 36.182016, 18)
m.add_layer(naip, None, 'NAIP RGB')
# Display the clusters.
m.add_layer(snic.randomVisualizer(), None, 'Clusters')
# Display the RGB cluster means.
vis_params = {'bands': ['R_mean', 'G_mean', 'B_mean'], 'min': 0, 'max': 255}
m.add_layer(snic, vis_params, 'RGB cluster means')
m
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-07-26 (UTC).
[null,null,["Zuletzt aktualisiert: 2025-07-26 (UTC)."],[[["\u003cp\u003eApplies the Simple Non-Iterative Clustering (SNIC) algorithm to generate superpixels from an image.\u003c/p\u003e\n"],["\u003cp\u003eOutputs an image containing cluster IDs and per-cluster band averages.\u003c/p\u003e\n"],["\u003cp\u003eAlgorithm parameters like \u003ccode\u003esize\u003c/code\u003e and \u003ccode\u003ecompactness\u003c/code\u003e impact the resulting superpixel shapes and sizes and may require adjustments.\u003c/p\u003e\n"],["\u003cp\u003eIf no seed locations are provided, the algorithm generates them based on a grid defined by the \u003ccode\u003esize\u003c/code\u003e parameter.\u003c/p\u003e\n"],["\u003cp\u003eSuperpixel clustering is sensitive to pixel scale and zoom level during interactive visualization.\u003c/p\u003e\n"]]],["SNIC clustering segments an image into superpixels, outputting cluster IDs and per-cluster averages for each input band. Key parameters include `size` (seed spacing), `compactness` (cluster shape), and `connectivity`. A user can provide `seeds` to define seed locations; otherwise, they are generated. The output `Image` includes cluster IDs, band averages, and optionally generated seed locations. Adjusting `size` and `compactness` is crucial for optimal results, which are also affected by pixel scale.\n"],null,["# ee.Algorithms.Image.Segmentation.SNIC\n\nSuperpixel clustering based on SNIC (Simple Non-Iterative Clustering). Outputs a band of cluster IDs and the per-cluster averages for each of the input bands. If the 'seeds' image isn't provided as input, the output will include a 'seeds' band containing the generated seed locations. See: Achanta, Radhakrishna and Susstrunk, Sabine, 'Superpixels and Polygons using Simple Non-Iterative Clustering', CVPR, 2017.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|----------------------------------------------------------------------------------------------------------------------------------|---------|\n| `ee.Algorithms.Image.Segmentation.SNIC(image, `*size* `, `*compactness* `, `*connectivity* `, `*neighborhoodSize* `, `*seeds*`)` | Image |\n\n| Argument | Type | Details |\n|--------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `image` | Image | The input image for clustering. |\n| `size` | Integer, default: 5 | The superpixel seed location spacing, in pixels. If 'seeds' image is provided, no grid is produced. |\n| `compactness` | Float, default: 1 | Compactness factor. Larger values cause clusters to be more compact (square). Setting this to 0 disables spatial distance weighting. |\n| `connectivity` | Integer, default: 8 | Connectivity. Either 4 or 8. |\n| `neighborhoodSize` | Integer, default: null | Tile neighborhood size (to avoid tile boundary artifacts). Defaults to 2 \\* size. |\n| `seeds` | Image, default: null | If provided, any non-zero valued pixels are used as seed locations. Pixels that touch (as specified by 'connectivity') are considered to belong to the same cluster. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Note that the compactness and size parameters can have a significant impact\n// on the result. They must be adjusted to meet image-specific characteristics\n// and patterns, typically through trial. Pixel scale (map zoom level) is also\n// important to consider. When exploring interactively through map tile\n// visualization, the segmentation result it dependent on zoom level. If you\n// need to evaluate the result at a specific scale, call .reproject() on the\n// result, but do so with caution because it overrides the default scaling\n// behavior that makes tile computation fast and efficient.\n\n\n// Load a NAIP image for a neighborhood in Las Vegas.\nvar naip = ee.Image('USDA/NAIP/DOQQ/m_3611554_sw_11_1_20170613');\n\n// Apply the SNIC algorithm to the image.\nvar snic = ee.Algorithms.Image.Segmentation.SNIC({\n image: naip,\n size: 30,\n compactness: 0.1,\n connectivity: 8,\n});\n\n// Display the original NAIP image as RGB.\n// Lock map zoom to maintain the desired scale of the segmentation computation.\nMap.setLocked(false, 18, 18);\nMap.setCenter(-115.32053, 36.182016, 18);\nMap.addLayer(naip, null, 'NAIP RGB');\n\n// Display the clusters.\nMap.addLayer(snic.randomVisualizer(), null, 'Clusters');\n\n// Display the RGB cluster means.\nvar visParams = {\n bands: ['R_mean', 'G_mean', 'B_mean'],\n min: 0,\n max: 255\n};\nMap.addLayer(snic, visParams, 'RGB cluster means');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Note that the compactness and size parameters can have a significant impact\n# on the result. They must be adjusted to meet image-specific characteristics\n# and patterns, typically through trial. Pixel scale (map zoom level) is also\n# important to consider. When exploring interactively through map tile\n# visualization, the segmentation result it dependent on zoom level. If you\n# need to evaluate the result at a specific scale, call .reproject() on the\n# result, but do so with caution because it overrides the default scaling\n# behavior that makes tile computation fast and efficient.\n\n\n# Load a NAIP image for a neighborhood in Las Vegas.\nnaip = ee.Image('USDA/NAIP/DOQQ/m_3611554_sw_11_1_20170613')\n\n# Apply the SNIC algorithm to the image.\nsnic = ee.Algorithms.Image.Segmentation.SNIC(\n image=naip, size=30, compactness=0.1, connectivity=8\n)\n\n# Display the original NAIP image as RGB.\nm = geemap.Map()\nm.set_center(-115.32053, 36.182016, 18)\nm.add_layer(naip, None, 'NAIP RGB')\n\n# Display the clusters.\nm.add_layer(snic.randomVisualizer(), None, 'Clusters')\n\n# Display the RGB cluster means.\nvis_params = {'bands': ['R_mean', 'G_mean', 'B_mean'], 'min': 0, 'max': 255}\nm.add_layer(snic, vis_params, 'RGB cluster means')\nm\n```"]]