ee.Array.eigen
با مجموعهها، منظم بمانید
ذخیره و طبقهبندی محتوا براساس اولویتهای شما.
بردارهای ویژه واقعی و مقادیر ویژه یک آرایه دو بعدی مربعی از ردیف های A و ستون ها را محاسبه می کند. آرایهای را با ردیفهای A و ستونهای A+1 برمیگرداند، که در آن هر ردیف دارای یک مقدار ویژه در ستون اول و بردار ویژه مربوطه در ستونهای A باقی مانده است. ردیف ها بر اساس مقدار ویژه، به ترتیب نزولی مرتب شده اند.
این پیاده سازی از DecompositionFactory.eig() از https://ejml.org استفاده می کند.
استفاده | برمی گرداند | Array. eigen () | آرایه |
استدلال | تایپ کنید | جزئیات | این: input | آرایه | یک آرایه مربعی دوبعدی که از آن تجزیه ارزش ویژه محاسبه می شود. |
نمونه ها
ویرایشگر کد (جاوا اسکریپت)
print(ee.Array([[0, 0], [0, 0]]).eigen()); // [[0,0,1],[0,1,0]]
print(ee.Array([[1, 0], [0, 0]]).eigen()); // [[1,1,0],[0,0,1]]
print(ee.Array([[0, 1], [0, 0]]).eigen()); // [[0,0,1],[0,1,0]]
print(ee.Array([[0, 0], [1, 0]]).eigen()); // [[0,-1,0],[0,0,-1]]
print(ee.Array([[0, 0], [0, 1]]).eigen()); // [[1,0,1],[0,1,0]]
print(ee.Array([[1, 1], [0, 0]]).eigen()); // [[1,1,0],[0,-1/√2,1/√2]]
print(ee.Array([[0, 0], [1, 1]]).eigen()); // [[1,0,-1],[0,-1/√2,1/√2]]]
print(ee.Array([[1, 0], [1, 0]]).eigen()); // [[1,1/√2,1/√2],[0,0,1]]
print(ee.Array([[1, 0], [0, 1]]).eigen()); // [[1,1,0],[1,0,1]]
print(ee.Array([[0, 1], [1, 0]]).eigen()); // [[1,1/√2,1/√2],[-1,1/√2,-1/√2]]
print(ee.Array([[0, 1], [0, 1]]).eigen()); // [[1,1/√2,1/√2],[0,1,0]]
print(ee.Array([[1, 1], [1, 0]]).eigen()); // [[1.62,0.85,0.53],[-0.62,0.53]]
print(ee.Array([[1, 1], [0, 1]]).eigen()); // [[1,0,1],[1,1,0]]
print(ee.Array([[1, 0], [1, 1]]).eigen()); // [[1,-1,0],[1,0,-1]]
// [[1.62,-0.53,-0.85],[-0.62,-0.85,0.53]]
print(ee.Array([[0, 1], [1, 1]]).eigen());
print(ee.Array([[1, 1], [1, 1]]).eigen()); // [[2,1/√2,1/√2],[0,1/√2,-1/√2]]
var matrix = ee.Array([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]);
print(matrix.eigen()); // [[1,1,0,0],[1,0,1,0],[1,0,0,1]]
var matrix = ee.Array([
[2, 0, 0],
[0, 3, 0],
[0, 0, 4]]);
print(matrix.eigen()); // [[4,0,0,1],[3,0,1,0],[2,1,0,0]]
matrix = ee.Array([
[1, 0, 0],
[0, 0, 0],
[0, 0, 0]]);
print(matrix.eigen()); // [[1,1,0,0],[0,0,1,0],[0,0,0,1]]
matrix = ee.Array([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]]);
// [[3,-0.58,-0.58,-0.58],[0,0,-1/√2,1/√2],[0,-0.82,0.41,0.41]]
print(matrix.eigen());
راه اندازی پایتون
برای اطلاعات در مورد API پایتون و استفاده از geemap
برای توسعه تعاملی به صفحه محیط پایتون مراجعه کنید.
import ee
import geemap.core as geemap
کولب (پایتون)
display(ee.Array([[0, 0], [0, 0]]).eigen()) # [[0, 0, 1], [0, 1, 0]]
display(ee.Array([[1, 0], [0, 0]]).eigen()) # [[1, 1, 0], [0,0,1]]
display(ee.Array([[0, 1], [0, 0]]).eigen()) # [[0, 0, 1], [0, 1, 0]]
display(ee.Array([[0, 0], [1, 0]]).eigen()) # [[0, -1, 0], [0, 0, -1]]
display(ee.Array([[0, 0], [0, 1]]).eigen()) # [[1, 0, 1], [0, 1, 0]]
# [[1, 1, 0], [0, -1/√2, 1/√2]]
display(ee.Array([[1, 1], [0, 0]]).eigen())
# [[1, 0, -1], [0, -1/√2, 1/√2]]]
display(ee.Array([[0, 0], [1, 1]]).eigen())
# [[1, 1/√2, 1/√2], [0, 0, 1]]
display(ee.Array([[1, 0], [1, 0]]).eigen())
display(ee.Array([[1, 0], [0, 1]]).eigen()) # [[1, 1, 0], [1, 0, 1]]
# [[1, 1/√2, 1/√2], [-1, 1/√2, -1/√2]]
display(ee.Array([[0, 1], [1, 0]]).eigen())
# [[1, 1/√2, 1/√2], [0, 1, 0]]
display(ee.Array([[0, 1], [0, 1]]).eigen())
# [[1.62, 0.85, 0.53], [-0.62, 0.53]]
display(ee.Array([[1, 1], [1, 0]]).eigen())
display(ee.Array([[1, 1], [0, 1]]).eigen()) # [[1, 0, 1], [1, 1, 0]]
display(ee.Array([[1, 0], [1, 1]]).eigen()) # [[1, -1, 0], [1, 0, -1]]
# [[1.62, -0.53, -0.85], [-0.62, -0.85, 0.53]]
display(ee.Array([[0, 1], [1, 1]]).eigen())
# [[2, 1/√2, 1/√2], [0, 1/√2, -1/√2]]
display(ee.Array([[1, 1], [1, 1]]).eigen())
matrix = ee.Array([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
display(matrix.eigen()) # [[1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1]]
matrix = ee.Array([
[2, 0, 0],
[0, 3, 0],
[0, 0, 4]])
display(matrix.eigen()) # [[4, 0, 0, 1], [3, 0, 1, 0], [2, 1, 0, 0]]
matrix = ee.Array([
[1, 0, 0],
[0, 0, 0],
[0, 0, 0]])
display(matrix.eigen()) # [[1, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]
matrix = ee.Array([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
# [[3, -0.58, -0.58, -0.58], [0, 0, -1/√2, 1/√2], [0, -0.82, 0.41, 0.41]]
display(matrix.eigen())
جز در مواردی که غیر از این ذکر شده باشد،محتوای این صفحه تحت مجوز Creative Commons Attribution 4.0 License است. نمونه کدها نیز دارای مجوز Apache 2.0 License است. برای اطلاع از جزئیات، به خطمشیهای سایت Google Developers مراجعه کنید. جاوا علامت تجاری ثبتشده Oracle و/یا شرکتهای وابسته به آن است.
تاریخ آخرین بهروزرسانی 2025-07-24 بهوقت ساعت هماهنگ جهانی.
[null,null,["تاریخ آخرین بهروزرسانی 2025-07-24 بهوقت ساعت هماهنگ جهانی."],[[["\u003cp\u003eComputes the real eigenvectors and eigenvalues of a 2D square array.\u003c/p\u003e\n"],["\u003cp\u003eReturns an array where each row represents an eigenvalue and its corresponding eigenvector.\u003c/p\u003e\n"],["\u003cp\u003eEigenvalues are sorted in descending order within the output array.\u003c/p\u003e\n"],["\u003cp\u003eUtilizes the \u003ccode\u003eDecompositionFactory.eig()\u003c/code\u003e method from the EJML library for computation.\u003c/p\u003e\n"],["\u003cp\u003eAccepts a single argument: the input 2D square array.\u003c/p\u003e\n"]]],["The `eigen()` function computes the eigenvalues and eigenvectors of a square 2D array. It takes a square 2D array as input and returns a new array where each row represents an eigenvalue and its corresponding eigenvector. The first column of each row contains the eigenvalue, and the remaining columns contain the eigenvector components. The rows are sorted in descending order by eigenvalue. It uses `DecompositionFactory.eig()` for its core calculations.\n"],null,["# ee.Array.eigen\n\nComputes the real eigenvectors and eigenvalues of a square 2D array of A rows and A columns. Returns an array with A rows and A+1 columns, where each row contains an eigenvalue in the first column, and the corresponding eigenvector in the remaining A columns. The rows are sorted by eigenvalue, in descending order.\n\n\u003cbr /\u003e\n\nThis implementation uses DecompositionFactory.eig() from https://ejml.org.\n\n| Usage | Returns |\n|-----------------|---------|\n| Array.eigen`()` | Array |\n\n| Argument | Type | Details |\n|---------------|-------|------------------------------------------------------------------------|\n| this: `input` | Array | A square, 2D array from which to compute the eigenvalue decomposition. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\nprint(ee.Array([[0, 0], [0, 0]]).eigen()); // [[0,0,1],[0,1,0]]\n\nprint(ee.Array([[1, 0], [0, 0]]).eigen()); // [[1,1,0],[0,0,1]]\nprint(ee.Array([[0, 1], [0, 0]]).eigen()); // [[0,0,1],[0,1,0]]\nprint(ee.Array([[0, 0], [1, 0]]).eigen()); // [[0,-1,0],[0,0,-1]]\nprint(ee.Array([[0, 0], [0, 1]]).eigen()); // [[1,0,1],[0,1,0]]\n\nprint(ee.Array([[1, 1], [0, 0]]).eigen()); // [[1,1,0],[0,-1/√2,1/√2]]\nprint(ee.Array([[0, 0], [1, 1]]).eigen()); // [[1,0,-1],[0,-1/√2,1/√2]]]\n\nprint(ee.Array([[1, 0], [1, 0]]).eigen()); // [[1,1/√2,1/√2],[0,0,1]]\nprint(ee.Array([[1, 0], [0, 1]]).eigen()); // [[1,1,0],[1,0,1]]\nprint(ee.Array([[0, 1], [1, 0]]).eigen()); // [[1,1/√2,1/√2],[-1,1/√2,-1/√2]]\nprint(ee.Array([[0, 1], [0, 1]]).eigen()); // [[1,1/√2,1/√2],[0,1,0]]\n\nprint(ee.Array([[1, 1], [1, 0]]).eigen()); // [[1.62,0.85,0.53],[-0.62,0.53]]\nprint(ee.Array([[1, 1], [0, 1]]).eigen()); // [[1,0,1],[1,1,0]]\nprint(ee.Array([[1, 0], [1, 1]]).eigen()); // [[1,-1,0],[1,0,-1]]\n// [[1.62,-0.53,-0.85],[-0.62,-0.85,0.53]]\nprint(ee.Array([[0, 1], [1, 1]]).eigen());\n\nprint(ee.Array([[1, 1], [1, 1]]).eigen()); // [[2,1/√2,1/√2],[0,1/√2,-1/√2]]\n\nvar matrix = ee.Array([\n [1, 0, 0],\n [0, 1, 0],\n [0, 0, 1]]);\nprint(matrix.eigen()); // [[1,1,0,0],[1,0,1,0],[1,0,0,1]]\n\nvar matrix = ee.Array([\n [2, 0, 0],\n [0, 3, 0],\n [0, 0, 4]]);\nprint(matrix.eigen()); // [[4,0,0,1],[3,0,1,0],[2,1,0,0]]\n\nmatrix = ee.Array([\n [1, 0, 0],\n [0, 0, 0],\n [0, 0, 0]]);\nprint(matrix.eigen()); // [[1,1,0,0],[0,0,1,0],[0,0,0,1]]\n\nmatrix = ee.Array([\n [1, 1, 1],\n [1, 1, 1],\n [1, 1, 1]]);\n// [[3,-0.58,-0.58,-0.58],[0,0,-1/√2,1/√2],[0,-0.82,0.41,0.41]]\nprint(matrix.eigen());\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\ndisplay(ee.Array([[0, 0], [0, 0]]).eigen()) # [[0, 0, 1], [0, 1, 0]]\n\ndisplay(ee.Array([[1, 0], [0, 0]]).eigen()) # [[1, 1, 0], [0,0,1]]\ndisplay(ee.Array([[0, 1], [0, 0]]).eigen()) # [[0, 0, 1], [0, 1, 0]]\ndisplay(ee.Array([[0, 0], [1, 0]]).eigen()) # [[0, -1, 0], [0, 0, -1]]\ndisplay(ee.Array([[0, 0], [0, 1]]).eigen()) # [[1, 0, 1], [0, 1, 0]]\n\n# [[1, 1, 0], [0, -1/√2, 1/√2]]\ndisplay(ee.Array([[1, 1], [0, 0]]).eigen())\n\n# [[1, 0, -1], [0, -1/√2, 1/√2]]]\ndisplay(ee.Array([[0, 0], [1, 1]]).eigen())\n\n# [[1, 1/√2, 1/√2], [0, 0, 1]]\ndisplay(ee.Array([[1, 0], [1, 0]]).eigen())\ndisplay(ee.Array([[1, 0], [0, 1]]).eigen()) # [[1, 1, 0], [1, 0, 1]]\n\n# [[1, 1/√2, 1/√2], [-1, 1/√2, -1/√2]]\ndisplay(ee.Array([[0, 1], [1, 0]]).eigen())\n\n# [[1, 1/√2, 1/√2], [0, 1, 0]]\ndisplay(ee.Array([[0, 1], [0, 1]]).eigen())\n\n# [[1.62, 0.85, 0.53], [-0.62, 0.53]]\ndisplay(ee.Array([[1, 1], [1, 0]]).eigen())\ndisplay(ee.Array([[1, 1], [0, 1]]).eigen()) # [[1, 0, 1], [1, 1, 0]]\ndisplay(ee.Array([[1, 0], [1, 1]]).eigen()) # [[1, -1, 0], [1, 0, -1]]\n\n# [[1.62, -0.53, -0.85], [-0.62, -0.85, 0.53]]\ndisplay(ee.Array([[0, 1], [1, 1]]).eigen())\n\n# [[2, 1/√2, 1/√2], [0, 1/√2, -1/√2]]\ndisplay(ee.Array([[1, 1], [1, 1]]).eigen())\n\nmatrix = ee.Array([\n [1, 0, 0],\n [0, 1, 0],\n [0, 0, 1]])\ndisplay(matrix.eigen()) # [[1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1]]\n\nmatrix = ee.Array([\n [2, 0, 0],\n [0, 3, 0],\n [0, 0, 4]])\ndisplay(matrix.eigen()) # [[4, 0, 0, 1], [3, 0, 1, 0], [2, 1, 0, 0]]\n\nmatrix = ee.Array([\n [1, 0, 0],\n [0, 0, 0],\n [0, 0, 0]])\ndisplay(matrix.eigen()) # [[1, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]\n\nmatrix = ee.Array([\n [1, 1, 1],\n [1, 1, 1],\n [1, 1, 1]])\n# [[3, -0.58, -0.58, -0.58], [0, 0, -1/√2, 1/√2], [0, -0.82, 0.41, 0.41]]\ndisplay(matrix.eigen())\n```"]]