ee.Array.eigen
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Calcule les vecteurs et valeurs propres réels d'un tableau 2D carré de A lignes et A colonnes. Renvoie un tableau avec A lignes et A+1 colonnes, où chaque ligne contient une valeur propre dans la première colonne et le vecteur propre correspondant dans les A colonnes restantes. Les lignes sont triées par valeur propre, dans l'ordre décroissant.
Cette implémentation utilise DecompositionFactory.eig() à partir de https://ejml.org.
Utilisation | Renvoie |
---|
Array.eigen() | Tableau |
Argument | Type | Détails |
---|
ceci : input | Tableau | Tableau carré à deux dimensions à partir duquel calculer la décomposition en valeurs propres. |
Exemples
Éditeur de code (JavaScript)
print(ee.Array([[0, 0], [0, 0]]).eigen()); // [[0,0,1],[0,1,0]]
print(ee.Array([[1, 0], [0, 0]]).eigen()); // [[1,1,0],[0,0,1]]
print(ee.Array([[0, 1], [0, 0]]).eigen()); // [[0,0,1],[0,1,0]]
print(ee.Array([[0, 0], [1, 0]]).eigen()); // [[0,-1,0],[0,0,-1]]
print(ee.Array([[0, 0], [0, 1]]).eigen()); // [[1,0,1],[0,1,0]]
print(ee.Array([[1, 1], [0, 0]]).eigen()); // [[1,1,0],[0,-1/√2,1/√2]]
print(ee.Array([[0, 0], [1, 1]]).eigen()); // [[1,0,-1],[0,-1/√2,1/√2]]]
print(ee.Array([[1, 0], [1, 0]]).eigen()); // [[1,1/√2,1/√2],[0,0,1]]
print(ee.Array([[1, 0], [0, 1]]).eigen()); // [[1,1,0],[1,0,1]]
print(ee.Array([[0, 1], [1, 0]]).eigen()); // [[1,1/√2,1/√2],[-1,1/√2,-1/√2]]
print(ee.Array([[0, 1], [0, 1]]).eigen()); // [[1,1/√2,1/√2],[0,1,0]]
print(ee.Array([[1, 1], [1, 0]]).eigen()); // [[1.62,0.85,0.53],[-0.62,0.53]]
print(ee.Array([[1, 1], [0, 1]]).eigen()); // [[1,0,1],[1,1,0]]
print(ee.Array([[1, 0], [1, 1]]).eigen()); // [[1,-1,0],[1,0,-1]]
// [[1.62,-0.53,-0.85],[-0.62,-0.85,0.53]]
print(ee.Array([[0, 1], [1, 1]]).eigen());
print(ee.Array([[1, 1], [1, 1]]).eigen()); // [[2,1/√2,1/√2],[0,1/√2,-1/√2]]
var matrix = ee.Array([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]);
print(matrix.eigen()); // [[1,1,0,0],[1,0,1,0],[1,0,0,1]]
var matrix = ee.Array([
[2, 0, 0],
[0, 3, 0],
[0, 0, 4]]);
print(matrix.eigen()); // [[4,0,0,1],[3,0,1,0],[2,1,0,0]]
matrix = ee.Array([
[1, 0, 0],
[0, 0, 0],
[0, 0, 0]]);
print(matrix.eigen()); // [[1,1,0,0],[0,0,1,0],[0,0,0,1]]
matrix = ee.Array([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]]);
// [[3,-0.58,-0.58,-0.58],[0,0,-1/√2,1/√2],[0,-0.82,0.41,0.41]]
print(matrix.eigen());
Configuration de Python
Consultez la page
Environnement Python pour en savoir plus sur l'API Python et sur l'utilisation de geemap
pour le développement interactif.
import ee
import geemap.core as geemap
Colab (Python)
display(ee.Array([[0, 0], [0, 0]]).eigen()) # [[0, 0, 1], [0, 1, 0]]
display(ee.Array([[1, 0], [0, 0]]).eigen()) # [[1, 1, 0], [0,0,1]]
display(ee.Array([[0, 1], [0, 0]]).eigen()) # [[0, 0, 1], [0, 1, 0]]
display(ee.Array([[0, 0], [1, 0]]).eigen()) # [[0, -1, 0], [0, 0, -1]]
display(ee.Array([[0, 0], [0, 1]]).eigen()) # [[1, 0, 1], [0, 1, 0]]
# [[1, 1, 0], [0, -1/√2, 1/√2]]
display(ee.Array([[1, 1], [0, 0]]).eigen())
# [[1, 0, -1], [0, -1/√2, 1/√2]]]
display(ee.Array([[0, 0], [1, 1]]).eigen())
# [[1, 1/√2, 1/√2], [0, 0, 1]]
display(ee.Array([[1, 0], [1, 0]]).eigen())
display(ee.Array([[1, 0], [0, 1]]).eigen()) # [[1, 1, 0], [1, 0, 1]]
# [[1, 1/√2, 1/√2], [-1, 1/√2, -1/√2]]
display(ee.Array([[0, 1], [1, 0]]).eigen())
# [[1, 1/√2, 1/√2], [0, 1, 0]]
display(ee.Array([[0, 1], [0, 1]]).eigen())
# [[1.62, 0.85, 0.53], [-0.62, 0.53]]
display(ee.Array([[1, 1], [1, 0]]).eigen())
display(ee.Array([[1, 1], [0, 1]]).eigen()) # [[1, 0, 1], [1, 1, 0]]
display(ee.Array([[1, 0], [1, 1]]).eigen()) # [[1, -1, 0], [1, 0, -1]]
# [[1.62, -0.53, -0.85], [-0.62, -0.85, 0.53]]
display(ee.Array([[0, 1], [1, 1]]).eigen())
# [[2, 1/√2, 1/√2], [0, 1/√2, -1/√2]]
display(ee.Array([[1, 1], [1, 1]]).eigen())
matrix = ee.Array([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
display(matrix.eigen()) # [[1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1]]
matrix = ee.Array([
[2, 0, 0],
[0, 3, 0],
[0, 0, 4]])
display(matrix.eigen()) # [[4, 0, 0, 1], [3, 0, 1, 0], [2, 1, 0, 0]]
matrix = ee.Array([
[1, 0, 0],
[0, 0, 0],
[0, 0, 0]])
display(matrix.eigen()) # [[1, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]
matrix = ee.Array([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
# [[3, -0.58, -0.58, -0.58], [0, 0, -1/√2, 1/√2], [0, -0.82, 0.41, 0.41]]
display(matrix.eigen())
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[[["\u003cp\u003eComputes the real eigenvectors and eigenvalues of a 2D square array.\u003c/p\u003e\n"],["\u003cp\u003eReturns an array where each row represents an eigenvalue and its corresponding eigenvector.\u003c/p\u003e\n"],["\u003cp\u003eEigenvalues are sorted in descending order within the output array.\u003c/p\u003e\n"],["\u003cp\u003eUtilizes the \u003ccode\u003eDecompositionFactory.eig()\u003c/code\u003e method from the EJML library for computation.\u003c/p\u003e\n"],["\u003cp\u003eAccepts a single argument: the input 2D square array.\u003c/p\u003e\n"]]],["The `eigen()` function computes the eigenvalues and eigenvectors of a square 2D array. It takes a square 2D array as input and returns a new array where each row represents an eigenvalue and its corresponding eigenvector. The first column of each row contains the eigenvalue, and the remaining columns contain the eigenvector components. The rows are sorted in descending order by eigenvalue. It uses `DecompositionFactory.eig()` for its core calculations.\n"],null,["# ee.Array.eigen\n\nComputes the real eigenvectors and eigenvalues of a square 2D array of A rows and A columns. Returns an array with A rows and A+1 columns, where each row contains an eigenvalue in the first column, and the corresponding eigenvector in the remaining A columns. The rows are sorted by eigenvalue, in descending order.\n\n\u003cbr /\u003e\n\nThis implementation uses DecompositionFactory.eig() from https://ejml.org.\n\n| Usage | Returns |\n|-----------------|---------|\n| Array.eigen`()` | Array |\n\n| Argument | Type | Details |\n|---------------|-------|------------------------------------------------------------------------|\n| this: `input` | Array | A square, 2D array from which to compute the eigenvalue decomposition. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\nprint(ee.Array([[0, 0], [0, 0]]).eigen()); // [[0,0,1],[0,1,0]]\n\nprint(ee.Array([[1, 0], [0, 0]]).eigen()); // [[1,1,0],[0,0,1]]\nprint(ee.Array([[0, 1], [0, 0]]).eigen()); // [[0,0,1],[0,1,0]]\nprint(ee.Array([[0, 0], [1, 0]]).eigen()); // [[0,-1,0],[0,0,-1]]\nprint(ee.Array([[0, 0], [0, 1]]).eigen()); // [[1,0,1],[0,1,0]]\n\nprint(ee.Array([[1, 1], [0, 0]]).eigen()); // [[1,1,0],[0,-1/√2,1/√2]]\nprint(ee.Array([[0, 0], [1, 1]]).eigen()); // [[1,0,-1],[0,-1/√2,1/√2]]]\n\nprint(ee.Array([[1, 0], [1, 0]]).eigen()); // [[1,1/√2,1/√2],[0,0,1]]\nprint(ee.Array([[1, 0], [0, 1]]).eigen()); // [[1,1,0],[1,0,1]]\nprint(ee.Array([[0, 1], [1, 0]]).eigen()); // [[1,1/√2,1/√2],[-1,1/√2,-1/√2]]\nprint(ee.Array([[0, 1], [0, 1]]).eigen()); // [[1,1/√2,1/√2],[0,1,0]]\n\nprint(ee.Array([[1, 1], [1, 0]]).eigen()); // [[1.62,0.85,0.53],[-0.62,0.53]]\nprint(ee.Array([[1, 1], [0, 1]]).eigen()); // [[1,0,1],[1,1,0]]\nprint(ee.Array([[1, 0], [1, 1]]).eigen()); // [[1,-1,0],[1,0,-1]]\n// [[1.62,-0.53,-0.85],[-0.62,-0.85,0.53]]\nprint(ee.Array([[0, 1], [1, 1]]).eigen());\n\nprint(ee.Array([[1, 1], [1, 1]]).eigen()); // [[2,1/√2,1/√2],[0,1/√2,-1/√2]]\n\nvar matrix = ee.Array([\n [1, 0, 0],\n [0, 1, 0],\n [0, 0, 1]]);\nprint(matrix.eigen()); // [[1,1,0,0],[1,0,1,0],[1,0,0,1]]\n\nvar matrix = ee.Array([\n [2, 0, 0],\n [0, 3, 0],\n [0, 0, 4]]);\nprint(matrix.eigen()); // [[4,0,0,1],[3,0,1,0],[2,1,0,0]]\n\nmatrix = ee.Array([\n [1, 0, 0],\n [0, 0, 0],\n [0, 0, 0]]);\nprint(matrix.eigen()); // [[1,1,0,0],[0,0,1,0],[0,0,0,1]]\n\nmatrix = ee.Array([\n [1, 1, 1],\n [1, 1, 1],\n [1, 1, 1]]);\n// [[3,-0.58,-0.58,-0.58],[0,0,-1/√2,1/√2],[0,-0.82,0.41,0.41]]\nprint(matrix.eigen());\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\ndisplay(ee.Array([[0, 0], [0, 0]]).eigen()) # [[0, 0, 1], [0, 1, 0]]\n\ndisplay(ee.Array([[1, 0], [0, 0]]).eigen()) # [[1, 1, 0], [0,0,1]]\ndisplay(ee.Array([[0, 1], [0, 0]]).eigen()) # [[0, 0, 1], [0, 1, 0]]\ndisplay(ee.Array([[0, 0], [1, 0]]).eigen()) # [[0, -1, 0], [0, 0, -1]]\ndisplay(ee.Array([[0, 0], [0, 1]]).eigen()) # [[1, 0, 1], [0, 1, 0]]\n\n# [[1, 1, 0], [0, -1/√2, 1/√2]]\ndisplay(ee.Array([[1, 1], [0, 0]]).eigen())\n\n# [[1, 0, -1], [0, -1/√2, 1/√2]]]\ndisplay(ee.Array([[0, 0], [1, 1]]).eigen())\n\n# [[1, 1/√2, 1/√2], [0, 0, 1]]\ndisplay(ee.Array([[1, 0], [1, 0]]).eigen())\ndisplay(ee.Array([[1, 0], [0, 1]]).eigen()) # [[1, 1, 0], [1, 0, 1]]\n\n# [[1, 1/√2, 1/√2], [-1, 1/√2, -1/√2]]\ndisplay(ee.Array([[0, 1], [1, 0]]).eigen())\n\n# [[1, 1/√2, 1/√2], [0, 1, 0]]\ndisplay(ee.Array([[0, 1], [0, 1]]).eigen())\n\n# [[1.62, 0.85, 0.53], [-0.62, 0.53]]\ndisplay(ee.Array([[1, 1], [1, 0]]).eigen())\ndisplay(ee.Array([[1, 1], [0, 1]]).eigen()) # [[1, 0, 1], [1, 1, 0]]\ndisplay(ee.Array([[1, 0], [1, 1]]).eigen()) # [[1, -1, 0], [1, 0, -1]]\n\n# [[1.62, -0.53, -0.85], [-0.62, -0.85, 0.53]]\ndisplay(ee.Array([[0, 1], [1, 1]]).eigen())\n\n# [[2, 1/√2, 1/√2], [0, 1/√2, -1/√2]]\ndisplay(ee.Array([[1, 1], [1, 1]]).eigen())\n\nmatrix = ee.Array([\n [1, 0, 0],\n [0, 1, 0],\n [0, 0, 1]])\ndisplay(matrix.eigen()) # [[1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1]]\n\nmatrix = ee.Array([\n [2, 0, 0],\n [0, 3, 0],\n [0, 0, 4]])\ndisplay(matrix.eigen()) # [[4, 0, 0, 1], [3, 0, 1, 0], [2, 1, 0, 0]]\n\nmatrix = ee.Array([\n [1, 0, 0],\n [0, 0, 0],\n [0, 0, 0]])\ndisplay(matrix.eigen()) # [[1, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]\n\nmatrix = ee.Array([\n [1, 1, 1],\n [1, 1, 1],\n [1, 1, 1]])\n# [[3, -0.58, -0.58, -0.58], [0, 0, -1/√2, 1/√2], [0, -0.82, 0.41, 0.41]]\ndisplay(matrix.eigen())\n```"]]