ee.Classifier.libsvm

Crea un clasificador de máquinas de vectores de asistencia vacío.

UsoMuestra
ee.Classifier.libsvm(decisionProcedure, svmType, kernelType, shrinking, degree, gamma, coef0, cost, nu, terminationEpsilon, lossEpsilon, oneClass)Clasificador
ArgumentoTipoDetalles
decisionProcedureCadena. El valor predeterminado es "Voting".Es el procedimiento de decisión que se usará para la clasificación. Puede ser "Voting" o "Margin". No se usa para la regresión.
svmTypeCadena. El valor predeterminado es "C_SVC".Es el tipo de SVM. Uno de los siguientes: "C_SVC", "NU_SVC", "ONE_CLASS", "EPSILON_SVR" o "NU_SVR".
kernelTypeCadena. El valor predeterminado es "LINEAR".Es el tipo de kernel. Una de las siguientes funciones: LINEAR (u′×v), POLY ((γ×u′×v + coef₀)ᵈᵉᵍʳᵉᵉ), RBF (exp(-γ×|u-v|²)) o SIGMOID (tanh(γ×u′×v + coef₀)).
shrinkingBooleano, valor predeterminado: verdaderoIndica si se deben usar heurísticas de reducción.
degreeNúmero entero, valor predeterminado: nuloEs el grado del polinomio. Es válido para los kernels de POLY.
gammaNúmero de punto flotante, valor predeterminado: nuloEs el valor de gamma en la función kernel. El valor predeterminado es el recíproco de la cantidad de atributos. Es válido para los kernels POLY, RBF y SIGMOID.
coef0Número de punto flotante, valor predeterminado: nuloEs el valor de coef₀ en la función kernel. La configuración predeterminada es 0. Es válido para los kernels POLY y SIGMOID.
costNúmero de punto flotante, valor predeterminado: nuloEs el parámetro de costo (C). El valor predeterminado es 1. Solo es válido para C-SVC, epsilon-SVR y nu-SVR.
nuNúmero de punto flotante, valor predeterminado: nuloEs el parámetro nu. La configuración predeterminada es 0.5. Solo es válido para nu-SVC, SVM de una sola clase y nu-SVR.
terminationEpsilonNúmero de punto flotante, valor predeterminado: nuloTolerancia del criterio de detención (e). El valor predeterminado es 0.001. Solo es válido para epsilon-SVR.
lossEpsilonNúmero de punto flotante, valor predeterminado: nuloEpsilon en la función de pérdida (p). El valor predeterminado es 0.1. Solo es válido para epsilon-SVR.
oneClassNúmero entero, valor predeterminado: nuloEs la clase de los datos de entrenamiento con la que se entrenará en una SVM de una clase. La configuración predeterminada es 0. Solo es válido para SVM de una clase. Los valores posibles son 0 y 1. El resultado del clasificador es binario (0/1) y coincidirá con este valor de clase para los datos que se determinen que pertenecen a la clase.

Ejemplos

Editor de código (JavaScript)

// A Sentinel-2 surface reflectance image, reflectance bands selected,
// serves as the source for training and prediction in this contrived example.
var img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')
              .select('B.*');

// ESA WorldCover land cover map, used as label source in classifier training.
var lc = ee.Image('ESA/WorldCover/v100/2020');

// Remap the land cover class values to a 0-based sequential series.
var classValues = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100];
var remapValues = ee.List.sequence(0, 10);
var label = 'lc';
lc = lc.remap(classValues, remapValues).rename(label).toByte();

// Add land cover as a band of the reflectance image and sample 100 pixels at
// 10 m scale from each land cover class within a region of interest.
var roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838);
var sample = img.addBands(lc).stratifiedSample({
  numPoints: 100,
  classBand: label,
  region: roi,
  scale: 10,
  geometries: true
});

// Add a random value field to the sample and use it to approximately split 80%
// of the features into a training set and 20% into a validation set.
sample = sample.randomColumn();
var trainingSample = sample.filter('random <= 0.8');
var validationSample = sample.filter('random > 0.8');

// Train an SVM classifier (C-SVM classification, voting decision procedure,
// linear kernel) from the training sample.
var trainedClassifier = ee.Classifier.libsvm().train({
  features: trainingSample,
  classProperty: label,
  inputProperties: img.bandNames()
});

// Get information about the trained classifier.
print('Results of trained classifier', trainedClassifier.explain());

// Get a confusion matrix and overall accuracy for the training sample.
var trainAccuracy = trainedClassifier.confusionMatrix();
print('Training error matrix', trainAccuracy);
print('Training overall accuracy', trainAccuracy.accuracy());

// Get a confusion matrix and overall accuracy for the validation sample.
validationSample = validationSample.classify(trainedClassifier);
var validationAccuracy = validationSample.errorMatrix(label, 'classification');
print('Validation error matrix', validationAccuracy);
print('Validation accuracy', validationAccuracy.accuracy());

// Classify the reflectance image from the trained classifier.
var imgClassified = img.classify(trainedClassifier);

// Add the layers to the map.
var classVis = {
  min: 0,
  max: 10,
  palette: ['006400' ,'ffbb22', 'ffff4c', 'f096ff', 'fa0000', 'b4b4b4',
            'f0f0f0', '0064c8', '0096a0', '00cf75', 'fae6a0']
};
Map.setCenter(-122.184, 37.796, 12);
Map.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 3500}, 'img');
Map.addLayer(lc, classVis, 'lc');
Map.addLayer(imgClassified, classVis, 'Classified');
Map.addLayer(roi, {color: 'white'}, 'ROI', false, 0.5);
Map.addLayer(trainingSample, {color: 'black'}, 'Training sample', false);
Map.addLayer(validationSample, {color: 'white'}, 'Validation sample', false);

Configuración de Python

Consulta la página Entorno de Python para obtener información sobre la API de Python y el uso de geemap para el desarrollo interactivo.

import ee
import geemap.core as geemap

Colab (Python)

# A Sentinel-2 surface reflectance image, reflectance bands selected,
# serves as the source for training and prediction in this contrived example.
img = ee.Image(
    'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG'
).select('B.*')

# ESA WorldCover land cover map, used as label source in classifier training.
lc = ee.Image('ESA/WorldCover/v100/2020')

# Remap the land cover class values to a 0-based sequential series.
class_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]
remap_values = ee.List.sequence(0, 10)
label = 'lc'
lc = lc.remap(class_values, remap_values).rename(label).toByte()

# Add land cover as a band of the reflectance image and sample 100 pixels at
# 10 m scale from each land cover class within a region of interest.
roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838)
sample = img.addBands(lc).stratifiedSample(
    numPoints=100, classBand=label, region=roi, scale=10, geometries=True
)

# Add a random value field to the sample and use it to approximately split 80%
# of the features into a training set and 20% into a validation set.
sample = sample.randomColumn()
training_sample = sample.filter('random <= 0.8')
validation_sample = sample.filter('random > 0.8')

# Train an SVM classifier (C-SVM classification, voting decision procedure,
# linear kernel) from the training sample.
trained_classifier = ee.Classifier.libsvm().train(
    features=training_sample,
    classProperty=label,
    inputProperties=img.bandNames(),
)

# Get information about the trained classifier.
display('Results of trained classifier', trained_classifier.explain())

# Get a confusion matrix and overall accuracy for the training sample.
train_accuracy = trained_classifier.confusionMatrix()
display('Training error matrix', train_accuracy)
display('Training overall accuracy', train_accuracy.accuracy())

# Get a confusion matrix and overall accuracy for the validation sample.
validation_sample = validation_sample.classify(trained_classifier)
validation_accuracy = validation_sample.errorMatrix(label, 'classification')
display('Validation error matrix', validation_accuracy)
display('Validation accuracy', validation_accuracy.accuracy())

# Classify the reflectance image from the trained classifier.
img_classified = img.classify(trained_classifier)

# Add the layers to the map.
class_vis = {
    'min': 0,
    'max': 10,
    'palette': [
        '006400',
        'ffbb22',
        'ffff4c',
        'f096ff',
        'fa0000',
        'b4b4b4',
        'f0f0f0',
        '0064c8',
        '0096a0',
        '00cf75',
        'fae6a0',
    ],
}
m = geemap.Map()
m.set_center(-122.184, 37.796, 12)
m.add_layer(
    img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 3500}, 'img'
)
m.add_layer(lc, class_vis, 'lc')
m.add_layer(img_classified, class_vis, 'Classified')
m.add_layer(roi, {'color': 'white'}, 'ROI', False, 0.5)
m.add_layer(training_sample, {'color': 'black'}, 'Training sample', False)
m.add_layer(
    validation_sample, {'color': 'white'}, 'Validation sample', False
)
m