Annuncio: tutti i progetti non commerciali registrati per l'utilizzo di Earth Engine prima del
15 aprile 2025 devono
verificare l'idoneità non commerciale per mantenere l'accesso a Earth Engine.
ee.Classifier.minimumDistance
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Crea un classificatore della distanza minima per la metrica della distanza specificata. In modalità CLASSIFICAZIONE, viene restituita la classe più vicina. In modalità REGRESSION, viene restituita la distanza dal centro del corso più vicino. In modalità RAW, viene restituita la distanza da ogni centro di classe.
Utilizzo | Resi |
---|
ee.Classifier.minimumDistance(metric, kNearest) | Classificatore |
Argomento | Tipo | Dettagli |
---|
metric | Stringa, predefinito: "euclidean" | La metrica di distanza da utilizzare. Le opzioni sono:
- "euclidean": distanza euclidea dalla media della classe non normalizzata.
- "coseno": angolo spettrale rispetto alla media della classe non normalizzata.
- "mahalanobis": distanza di Mahalanobis dalla media della classe.
- "manhattan": distanza di Manhattan dalla media della classe non normalizzata.
|
kNearest | Numero intero, predefinito: 1 | Se maggiore di 1, il risultato conterrà un array dei k vicini più vicini o delle distanze, in base all'impostazione della modalità di output. Se kNearest è maggiore del numero totale di classi, verrà impostato su un valore uguale al numero di classi. |
Esempi
Editor di codice (JavaScript)
// A Sentinel-2 surface reflectance image, reflectance bands selected,
// serves as the source for training and prediction in this contrived example.
var img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')
.select('B.*');
// ESA WorldCover land cover map, used as label source in classifier training.
var lc = ee.Image('ESA/WorldCover/v100/2020');
// Remap the land cover class values to a 0-based sequential series.
var classValues = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100];
var remapValues = ee.List.sequence(0, 10);
var label = 'lc';
lc = lc.remap(classValues, remapValues).rename(label).toByte();
// Add land cover as a band of the reflectance image and sample 100 pixels at
// 10 m scale from each land cover class within a region of interest.
var roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838);
var sample = img.addBands(lc).stratifiedSample({
numPoints: 100,
classBand: label,
region: roi,
scale: 10,
geometries: true
});
// Add a random value field to the sample and use it to approximately split 80%
// of the features into a training set and 20% into a validation set.
sample = sample.randomColumn();
var trainingSample = sample.filter('random <= 0.8');
var validationSample = sample.filter('random > 0.8');
// Train a minimum distance classifier (Mahalanobis distance metric) from
// the training sample.
var trainedClassifier = ee.Classifier.minimumDistance('mahalanobis').train({
features: trainingSample,
classProperty: label,
inputProperties: img.bandNames()
});
// Get information about the trained classifier.
print('Results of trained classifier', trainedClassifier.explain());
// Get a confusion matrix and overall accuracy for the training sample.
var trainAccuracy = trainedClassifier.confusionMatrix();
print('Training error matrix', trainAccuracy);
print('Training overall accuracy', trainAccuracy.accuracy());
// Get a confusion matrix and overall accuracy for the validation sample.
validationSample = validationSample.classify(trainedClassifier);
var validationAccuracy = validationSample.errorMatrix(label, 'classification');
print('Validation error matrix', validationAccuracy);
print('Validation accuracy', validationAccuracy.accuracy());
// Classify the reflectance image from the trained classifier.
var imgClassified = img.classify(trainedClassifier);
// Add the layers to the map.
var classVis = {
min: 0,
max: 10,
palette: ['006400' ,'ffbb22', 'ffff4c', 'f096ff', 'fa0000', 'b4b4b4',
'f0f0f0', '0064c8', '0096a0', '00cf75', 'fae6a0']
};
Map.setCenter(-122.184, 37.796, 12);
Map.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 3500}, 'img');
Map.addLayer(lc, classVis, 'lc');
Map.addLayer(imgClassified, classVis, 'Classified');
Map.addLayer(roi, {color: 'white'}, 'ROI', false, 0.5);
Map.addLayer(trainingSample, {color: 'black'}, 'Training sample', false);
Map.addLayer(validationSample, {color: 'white'}, 'Validation sample', false);
Configurazione di Python
Per informazioni sull'API Python e sull'utilizzo di geemap
per lo sviluppo interattivo, consulta la pagina
Ambiente Python.
import ee
import geemap.core as geemap
Colab (Python)
# A Sentinel-2 surface reflectance image, reflectance bands selected,
# serves as the source for training and prediction in this contrived example.
img = ee.Image(
'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG'
).select('B.*')
# ESA WorldCover land cover map, used as label source in classifier training.
lc = ee.Image('ESA/WorldCover/v100/2020')
# Remap the land cover class values to a 0-based sequential series.
class_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]
remap_values = ee.List.sequence(0, 10)
label = 'lc'
lc = lc.remap(class_values, remap_values).rename(label).toByte()
# Add land cover as a band of the reflectance image and sample 100 pixels at
# 10 m scale from each land cover class within a region of interest.
roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838)
sample = img.addBands(lc).stratifiedSample(
numPoints=100, classBand=label, region=roi, scale=10, geometries=True
)
# Add a random value field to the sample and use it to approximately split 80%
# of the features into a training set and 20% into a validation set.
sample = sample.randomColumn()
training_sample = sample.filter('random <= 0.8')
validation_sample = sample.filter('random > 0.8')
# Train a minimum distance classifier (Mahalanobis distance metric) from
# the training sample.
trained_classifier = ee.Classifier.minimumDistance('mahalanobis').train(
features=training_sample,
classProperty=label,
inputProperties=img.bandNames(),
)
# Get information about the trained classifier.
display('Results of trained classifier', trained_classifier.explain())
# Get a confusion matrix and overall accuracy for the training sample.
train_accuracy = trained_classifier.confusionMatrix()
display('Training error matrix', train_accuracy)
display('Training overall accuracy', train_accuracy.accuracy())
# Get a confusion matrix and overall accuracy for the validation sample.
validation_sample = validation_sample.classify(trained_classifier)
validation_accuracy = validation_sample.errorMatrix(label, 'classification')
display('Validation error matrix', validation_accuracy)
display('Validation accuracy', validation_accuracy.accuracy())
# Classify the reflectance image from the trained classifier.
img_classified = img.classify(trained_classifier)
# Add the layers to the map.
class_vis = {
'min': 0,
'max': 10,
'palette': [
'006400',
'ffbb22',
'ffff4c',
'f096ff',
'fa0000',
'b4b4b4',
'f0f0f0',
'0064c8',
'0096a0',
'00cf75',
'fae6a0',
],
}
m = geemap.Map()
m.set_center(-122.184, 37.796, 12)
m.add_layer(
img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 3500}, 'img'
)
m.add_layer(lc, class_vis, 'lc')
m.add_layer(img_classified, class_vis, 'Classified')
m.add_layer(roi, {'color': 'white'}, 'ROI', False, 0.5)
m.add_layer(training_sample, {'color': 'black'}, 'Training sample', False)
m.add_layer(
validation_sample, {'color': 'white'}, 'Validation sample', False
)
m
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-25 UTC.
[null,null,["Ultimo aggiornamento 2025-07-25 UTC."],[[["\u003cp\u003eCreates a classifier using the minimum distance to class centers based on a specified distance metric ('euclidean', 'cosine', 'mahalanobis', or 'manhattan').\u003c/p\u003e\n"],["\u003cp\u003eOffers three output modes: CLASSIFICATION (returns nearest class), REGRESSION (returns distance to nearest class), and RAW (returns distances to all class centers).\u003c/p\u003e\n"],["\u003cp\u003eOptionally considers the 'kNearest' neighbors, returning an array of nearest neighbors or distances if 'kNearest' is greater than 1.\u003c/p\u003e\n"]]],[],null,["# ee.Classifier.minimumDistance\n\nCreates a minimum distance classifier for the given distance metric. In CLASSIFICATION mode, the nearest class is returned. In REGRESSION mode, the distance to the nearest class center is returned. In RAW mode, the distance to every class center is returned.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|------------------------------------------------------------|------------|\n| `ee.Classifier.minimumDistance(`*metric* `, `*kNearest*`)` | Classifier |\n\n| Argument | Type | Details |\n|------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `metric` | String, default: \"euclidean\" | The distance metric to use. Options are: - 'euclidean' - Euclidean distance from the unnormalized class mean. - 'cosine' - spectral angle from the unnormalized class mean. - 'mahalanobis' - Mahalanobis distance from the class mean. - 'manhattan' - Manhattan distance from the unnormalized class mean. |\n| `kNearest` | Integer, default: 1 | If greater than 1, the result will contain an array of the k nearest neighbors or distances, based on the output mode setting. If kNearest is greater than the total number of classes, it will be set equal to the number of classes. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A Sentinel-2 surface reflectance image, reflectance bands selected,\n// serves as the source for training and prediction in this contrived example.\nvar img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')\n .select('B.*');\n\n// ESA WorldCover land cover map, used as label source in classifier training.\nvar lc = ee.Image('ESA/WorldCover/v100/2020');\n\n// Remap the land cover class values to a 0-based sequential series.\nvar classValues = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100];\nvar remapValues = ee.List.sequence(0, 10);\nvar label = 'lc';\nlc = lc.remap(classValues, remapValues).rename(label).toByte();\n\n// Add land cover as a band of the reflectance image and sample 100 pixels at\n// 10 m scale from each land cover class within a region of interest.\nvar roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838);\nvar sample = img.addBands(lc).stratifiedSample({\n numPoints: 100,\n classBand: label,\n region: roi,\n scale: 10,\n geometries: true\n});\n\n// Add a random value field to the sample and use it to approximately split 80%\n// of the features into a training set and 20% into a validation set.\nsample = sample.randomColumn();\nvar trainingSample = sample.filter('random \u003c= 0.8');\nvar validationSample = sample.filter('random \u003e 0.8');\n\n// Train a minimum distance classifier (Mahalanobis distance metric) from\n// the training sample.\nvar trainedClassifier = ee.Classifier.minimumDistance('mahalanobis').train({\n features: trainingSample,\n classProperty: label,\n inputProperties: img.bandNames()\n});\n\n// Get information about the trained classifier.\nprint('Results of trained classifier', trainedClassifier.explain());\n\n// Get a confusion matrix and overall accuracy for the training sample.\nvar trainAccuracy = trainedClassifier.confusionMatrix();\nprint('Training error matrix', trainAccuracy);\nprint('Training overall accuracy', trainAccuracy.accuracy());\n\n// Get a confusion matrix and overall accuracy for the validation sample.\nvalidationSample = validationSample.classify(trainedClassifier);\nvar validationAccuracy = validationSample.errorMatrix(label, 'classification');\nprint('Validation error matrix', validationAccuracy);\nprint('Validation accuracy', validationAccuracy.accuracy());\n\n// Classify the reflectance image from the trained classifier.\nvar imgClassified = img.classify(trainedClassifier);\n\n// Add the layers to the map.\nvar classVis = {\n min: 0,\n max: 10,\n palette: ['006400' ,'ffbb22', 'ffff4c', 'f096ff', 'fa0000', 'b4b4b4',\n 'f0f0f0', '0064c8', '0096a0', '00cf75', 'fae6a0']\n};\nMap.setCenter(-122.184, 37.796, 12);\nMap.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 3500}, 'img');\nMap.addLayer(lc, classVis, 'lc');\nMap.addLayer(imgClassified, classVis, 'Classified');\nMap.addLayer(roi, {color: 'white'}, 'ROI', false, 0.5);\nMap.addLayer(trainingSample, {color: 'black'}, 'Training sample', false);\nMap.addLayer(validationSample, {color: 'white'}, 'Validation sample', false);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# A Sentinel-2 surface reflectance image, reflectance bands selected,\n# serves as the source for training and prediction in this contrived example.\nimg = ee.Image(\n 'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG'\n).select('B.*')\n\n# ESA WorldCover land cover map, used as label source in classifier training.\nlc = ee.Image('ESA/WorldCover/v100/2020')\n\n# Remap the land cover class values to a 0-based sequential series.\nclass_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]\nremap_values = ee.List.sequence(0, 10)\nlabel = 'lc'\nlc = lc.remap(class_values, remap_values).rename(label).toByte()\n\n# Add land cover as a band of the reflectance image and sample 100 pixels at\n# 10 m scale from each land cover class within a region of interest.\nroi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838)\nsample = img.addBands(lc).stratifiedSample(\n numPoints=100, classBand=label, region=roi, scale=10, geometries=True\n)\n\n# Add a random value field to the sample and use it to approximately split 80%\n# of the features into a training set and 20% into a validation set.\nsample = sample.randomColumn()\ntraining_sample = sample.filter('random \u003c= 0.8')\nvalidation_sample = sample.filter('random \u003e 0.8')\n\n# Train a minimum distance classifier (Mahalanobis distance metric) from\n# the training sample.\ntrained_classifier = ee.Classifier.minimumDistance('mahalanobis').train(\n features=training_sample,\n classProperty=label,\n inputProperties=img.bandNames(),\n)\n\n# Get information about the trained classifier.\ndisplay('Results of trained classifier', trained_classifier.explain())\n\n# Get a confusion matrix and overall accuracy for the training sample.\ntrain_accuracy = trained_classifier.confusionMatrix()\ndisplay('Training error matrix', train_accuracy)\ndisplay('Training overall accuracy', train_accuracy.accuracy())\n\n# Get a confusion matrix and overall accuracy for the validation sample.\nvalidation_sample = validation_sample.classify(trained_classifier)\nvalidation_accuracy = validation_sample.errorMatrix(label, 'classification')\ndisplay('Validation error matrix', validation_accuracy)\ndisplay('Validation accuracy', validation_accuracy.accuracy())\n\n# Classify the reflectance image from the trained classifier.\nimg_classified = img.classify(trained_classifier)\n\n# Add the layers to the map.\nclass_vis = {\n 'min': 0,\n 'max': 10,\n 'palette': [\n '006400',\n 'ffbb22',\n 'ffff4c',\n 'f096ff',\n 'fa0000',\n 'b4b4b4',\n 'f0f0f0',\n '0064c8',\n '0096a0',\n '00cf75',\n 'fae6a0',\n ],\n}\nm = geemap.Map()\nm.set_center(-122.184, 37.796, 12)\nm.add_layer(\n img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 3500}, 'img'\n)\nm.add_layer(lc, class_vis, 'lc')\nm.add_layer(img_classified, class_vis, 'Classified')\nm.add_layer(roi, {'color': 'white'}, 'ROI', False, 0.5)\nm.add_layer(training_sample, {'color': 'black'}, 'Training sample', False)\nm.add_layer(\n validation_sample, {'color': 'white'}, 'Validation sample', False\n)\nm\n```"]]