إشعار: يجب
إثبات أهلية جميع المشاريع غير التجارية المسجّلة لاستخدام Earth Engine قبل
15 أبريل 2025 من أجل الحفاظ على إمكانية الوصول إلى Earth Engine.
ee.Classifier.smileKNN
تنظيم صفحاتك في مجموعات
يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.
تنشئ هذه الدالة مصنّف k-NN فارغًا.
خوارزمية الجار الأقرب (k-NN) هي طريقة لتصنيف العناصر من خلال تصويت الأغلبية من جيرانها، ويتم تعيين العنصر إلى الفئة الأكثر شيوعًا بين جيرانه الأقرب k (k هو عدد صحيح موجب، صغير عادةً، وفردي عادةً).
الاستخدام | المرتجعات |
---|
ee.Classifier.smileKNN(k, searchMethod, metric) | المصنِّف |
الوسيطة | النوع | التفاصيل |
---|
k | عدد صحيح، القيمة التلقائية: 1 | عدد العناصر المجاورة للتصنيف. |
searchMethod | سلسلة، القيمة التلقائية: "AUTO" | طريقة البحث في ما يلي القيم الصالحة [AUTO, LINEAR_SEARCH, KD_TREE, COVER_TREE].
سيختار AUTO بين KD_TREE وCOVER_TREE استنادًا إلى عدد السمات. قد تختلف النتائج بين طرق البحث المختلفة عن حالات التعادل في المسافة وقيم الاحتمالية. بما أنّ الأداء والنتائج قد تختلف، يُرجى الرجوع إلى مستندات SMILE والمراجع الأخرى. |
metric | سلسلة، القيمة التلقائية: "EUCLIDEAN" | مقياس المسافة المطلوب استخدامه. ملاحظة: لن تستخدم KD_TREE (وAUTO للأبعاد المنخفضة) المقياس المحدّد. الخيارات المتاحة هي:
EUCLIDEAN - المسافة الإقليدية
'MAHALANOBIS' - مسافة ماهالانوبيس
'MANHATTAN' - Manhattan distance.
'BRAYCURTIS' - مسافة Bray-Curtis |
أمثلة
محرّر الرموز البرمجية (JavaScript)
// Cloud masking for Landsat 8.
function maskL8sr(image) {
var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
var saturationMask = image.select('QA_RADSAT').eq(0);
// Apply the scaling factors to the appropriate bands.
var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);
// Replace the original bands with the scaled ones and apply the masks.
return image.addBands(opticalBands, null, true)
.addBands(thermalBands, null, true)
.updateMask(qaMask)
.updateMask(saturationMask);
}
// Map the function over one year of data.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
.filterDate('2020-01-01', '2021-01-01')
.map(maskL8sr);
// Make a median composite.
var composite = collection.median();
// Demonstration labels.
var labels = ee.FeatureCollection('projects/google/demo_landcover_labels')
// Use these bands for classification.
var bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'];
// The name of the property on the points storing the class label.
var classProperty = 'landcover';
// Sample the composite to generate training data. Note that the
// class label is stored in the 'landcover' property.
var training = composite.select(bands).sampleRegions(
{collection: labels, properties: [classProperty], scale: 30});
// Train a kNN classifier.
var classifier = ee.Classifier.smileKNN(5).train({
features: training,
classProperty: classProperty,
});
// Classify the composite.
var classified = composite.classify(classifier);
Map.setCenter(-122.184, 37.796, 12);
Map.addLayer(classified, {min: 0, max: 2, palette: ['red', 'green', 'blue']});
إعداد Python
راجِع صفحة
بيئة Python للحصول على معلومات حول واجهة برمجة التطبيقات Python واستخدام
geemap
للتطوير التفاعلي.
import ee
import geemap.core as geemap
Colab (Python)
# Cloud masking for Landsat 8.
def mask_l8_sr(image):
qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)
saturation_mask = image.select('QA_RADSAT').eq(0)
# Apply the scaling factors to the appropriate bands.
optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)
thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)
# Replace the original bands with the scaled ones and apply the masks.
return (
image.addBands(optical_bands, None, True)
.addBands(thermal_bands, None, True)
.updateMask(qa_mask)
.updateMask(saturation_mask)
)
# Map the function over one year of data.
collection = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
.filterDate('2020-01-01', '2021-01-01')
.map(mask_l8_sr)
)
# Make a median composite.
composite = collection.median()
# Demonstration labels.
labels = ee.FeatureCollection('projects/google/demo_landcover_labels')
# Use these bands for classification.
bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']
# The name of the property on the points storing the class label.
class_property = 'landcover'
# Sample the composite to generate training data. Note that the
# class label is stored in the 'landcover' property.
training = composite.select(bands).sampleRegions(
collection=labels, properties=[class_property], scale=30
)
# Train a kNN classifier.
classifier = ee.Classifier.smileKNN(5).train(
features=training, classProperty=class_property
)
# Classify the composite.
classified = composite.classify(classifier)
m = geemap.Map()
m.set_center(-122.184, 37.796, 12)
m.add_layer(
classified, {'min': 0, 'max': 2, 'palette': ['red', 'green', 'blue']}
)
m
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)"],[[["\u003cp\u003eCreates a k-Nearest Neighbors (k-NN) classifier using the SMILE machine learning library within Google Earth Engine.\u003c/p\u003e\n"],["\u003cp\u003eThe classifier is trained using labeled data and can be applied to classify images based on the proximity of pixel values to known classes.\u003c/p\u003e\n"],["\u003cp\u003eUsers can customize the number of neighbors (k), search method, and distance metric for the k-NN algorithm.\u003c/p\u003e\n"],["\u003cp\u003eIncludes JavaScript and Python examples demonstrating classifier training and image classification using Landsat 8 data.\u003c/p\u003e\n"]]],[],null,["# ee.Classifier.smileKNN\n\nCreates an empty k-NN classifier.\n\n\u003cbr /\u003e\n\nThe k-nearest neighbor algorithm (k-NN) is a method for classifying objects by a majority vote of its neighbors, with the object being assigned to the class most common amongst its k nearest neighbors (k is a positive integer, typically small, typically odd).\n\n| Usage | Returns |\n|-----------------------------------------------------------------|------------|\n| `ee.Classifier.smileKNN(`*k* `, `*searchMethod* `, `*metric*`)` | Classifier |\n\n| Argument | Type | Details |\n|----------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `k` | Integer, default: 1 | The number of neighbors for classification. |\n| `searchMethod` | String, default: \"AUTO\" | Search method. The following are valid \\[AUTO, LINEAR_SEARCH, KD_TREE, COVER_TREE\\]. AUTO will choose between KD_TREE and COVER_TREE depending on the dimension count. Results may vary between the different search methods for distance ties and probability values. Since performance and results may vary consult with SMILE's documentation and other literature. |\n| `metric` | String, default: \"EUCLIDEAN\" | The distance metric to use. NOTE: KD_TREE (and AUTO for low dimensions) will not use the metric selected. Options are: 'EUCLIDEAN' - Euclidean distance. 'MAHALANOBIS' - Mahalanobis distance. 'MANHATTAN' - Manhattan distance. 'BRAYCURTIS' - Bray-Curtis distance. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Cloud masking for Landsat 8.\nfunction maskL8sr(image) {\n var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);\n var saturationMask = image.select('QA_RADSAT').eq(0);\n\n // Apply the scaling factors to the appropriate bands.\n var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);\n var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);\n\n // Replace the original bands with the scaled ones and apply the masks.\n return image.addBands(opticalBands, null, true)\n .addBands(thermalBands, null, true)\n .updateMask(qaMask)\n .updateMask(saturationMask);\n}\n\n// Map the function over one year of data.\nvar collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\n .filterDate('2020-01-01', '2021-01-01')\n .map(maskL8sr);\n\n// Make a median composite.\nvar composite = collection.median();\n\n// Demonstration labels.\nvar labels = ee.FeatureCollection('projects/google/demo_landcover_labels')\n\n// Use these bands for classification.\nvar bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'];\n// The name of the property on the points storing the class label.\nvar classProperty = 'landcover';\n\n// Sample the composite to generate training data. Note that the\n// class label is stored in the 'landcover' property.\nvar training = composite.select(bands).sampleRegions(\n {collection: labels, properties: [classProperty], scale: 30});\n\n// Train a kNN classifier.\nvar classifier = ee.Classifier.smileKNN(5).train({\n features: training,\n classProperty: classProperty,\n});\n\n// Classify the composite.\nvar classified = composite.classify(classifier);\nMap.setCenter(-122.184, 37.796, 12);\nMap.addLayer(classified, {min: 0, max: 2, palette: ['red', 'green', 'blue']});\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Cloud masking for Landsat 8.\ndef mask_l8_sr(image):\n qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)\n saturation_mask = image.select('QA_RADSAT').eq(0)\n\n # Apply the scaling factors to the appropriate bands.\n optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)\n thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)\n\n # Replace the original bands with the scaled ones and apply the masks.\n return (\n image.addBands(optical_bands, None, True)\n .addBands(thermal_bands, None, True)\n .updateMask(qa_mask)\n .updateMask(saturation_mask)\n )\n\n\n# Map the function over one year of data.\ncollection = (\n ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\n .filterDate('2020-01-01', '2021-01-01')\n .map(mask_l8_sr)\n)\n\n# Make a median composite.\ncomposite = collection.median()\n\n# Demonstration labels.\nlabels = ee.FeatureCollection('projects/google/demo_landcover_labels')\n\n# Use these bands for classification.\nbands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']\n# The name of the property on the points storing the class label.\nclass_property = 'landcover'\n\n# Sample the composite to generate training data. Note that the\n# class label is stored in the 'landcover' property.\ntraining = composite.select(bands).sampleRegions(\n collection=labels, properties=[class_property], scale=30\n)\n\n# Train a kNN classifier.\nclassifier = ee.Classifier.smileKNN(5).train(\n features=training, classProperty=class_property\n)\n\n# Classify the composite.\nclassified = composite.classify(classifier)\n\nm = geemap.Map()\nm.set_center(-122.184, 37.796, 12)\nm.add_layer(\n classified, {'min': 0, 'max': 2, 'palette': ['red', 'green', 'blue']}\n)\nm\n```"]]