Pengumuman: Semua project nonkomersial yang terdaftar untuk menggunakan Earth Engine sebelum
15 April 2025 harus
memverifikasi kelayakan nonkomersial untuk mempertahankan akses Earth Engine.
ee.Classifier.smileKNN
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Membuat pengklasifikasi k-NN kosong.
Algoritma k-nearest neighbor (k-NN) adalah metode untuk mengklasifikasikan objek dengan suara terbanyak dari tetangganya, dengan objek yang ditetapkan ke kelas yang paling umum di antara k tetangga terdekatnya (k adalah bilangan bulat positif, biasanya kecil, biasanya ganjil).
Penggunaan | Hasil |
---|
ee.Classifier.smileKNN(k, searchMethod, metric) | Pengklasifikasi |
Argumen | Jenis | Detail |
---|
k | Bilangan bulat, default: 1 | Jumlah tetangga untuk klasifikasi. |
searchMethod | String, default: "AUTO" | Metode penelusuran. Berikut adalah [AUTO, LINEAR_SEARCH, KD_TREE, COVER_TREE] yang valid.
AUTO akan memilih antara KD_TREE dan COVER_TREE, bergantung pada jumlah dimensi. Hasil dapat bervariasi antara metode penelusuran yang berbeda untuk ikatan jarak dan nilai probabilitas. Karena performa dan hasil dapat bervariasi, lihat dokumentasi SMILE dan literatur lainnya. |
metric | String, default: "EUCLIDEAN" | Metrik jarak yang akan digunakan. CATATAN: KD_TREE (dan AUTO untuk dimensi rendah) tidak akan menggunakan metrik yang dipilih. Opsinya adalah:
'EUCLIDEAN' - Jarak Euclidean.
'MAHALANOBIS' - Jarak Mahalanobis.
'MANHATTAN' - Jarak Manhattan.
'BRAYCURTIS' - Jarak Bray-Curtis. |
Contoh
Code Editor (JavaScript)
// Cloud masking for Landsat 8.
function maskL8sr(image) {
var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
var saturationMask = image.select('QA_RADSAT').eq(0);
// Apply the scaling factors to the appropriate bands.
var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);
// Replace the original bands with the scaled ones and apply the masks.
return image.addBands(opticalBands, null, true)
.addBands(thermalBands, null, true)
.updateMask(qaMask)
.updateMask(saturationMask);
}
// Map the function over one year of data.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
.filterDate('2020-01-01', '2021-01-01')
.map(maskL8sr);
// Make a median composite.
var composite = collection.median();
// Demonstration labels.
var labels = ee.FeatureCollection('projects/google/demo_landcover_labels')
// Use these bands for classification.
var bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'];
// The name of the property on the points storing the class label.
var classProperty = 'landcover';
// Sample the composite to generate training data. Note that the
// class label is stored in the 'landcover' property.
var training = composite.select(bands).sampleRegions(
{collection: labels, properties: [classProperty], scale: 30});
// Train a kNN classifier.
var classifier = ee.Classifier.smileKNN(5).train({
features: training,
classProperty: classProperty,
});
// Classify the composite.
var classified = composite.classify(classifier);
Map.setCenter(-122.184, 37.796, 12);
Map.addLayer(classified, {min: 0, max: 2, palette: ['red', 'green', 'blue']});
Penyiapan Python
Lihat halaman
Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan
geemap
untuk pengembangan interaktif.
import ee
import geemap.core as geemap
Colab (Python)
# Cloud masking for Landsat 8.
def mask_l8_sr(image):
qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)
saturation_mask = image.select('QA_RADSAT').eq(0)
# Apply the scaling factors to the appropriate bands.
optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)
thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)
# Replace the original bands with the scaled ones and apply the masks.
return (
image.addBands(optical_bands, None, True)
.addBands(thermal_bands, None, True)
.updateMask(qa_mask)
.updateMask(saturation_mask)
)
# Map the function over one year of data.
collection = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
.filterDate('2020-01-01', '2021-01-01')
.map(mask_l8_sr)
)
# Make a median composite.
composite = collection.median()
# Demonstration labels.
labels = ee.FeatureCollection('projects/google/demo_landcover_labels')
# Use these bands for classification.
bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']
# The name of the property on the points storing the class label.
class_property = 'landcover'
# Sample the composite to generate training data. Note that the
# class label is stored in the 'landcover' property.
training = composite.select(bands).sampleRegions(
collection=labels, properties=[class_property], scale=30
)
# Train a kNN classifier.
classifier = ee.Classifier.smileKNN(5).train(
features=training, classProperty=class_property
)
# Classify the composite.
classified = composite.classify(classifier)
m = geemap.Map()
m.set_center(-122.184, 37.796, 12)
m.add_layer(
classified, {'min': 0, 'max': 2, 'palette': ['red', 'green', 'blue']}
)
m
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[[["\u003cp\u003eCreates a k-Nearest Neighbors (k-NN) classifier using the SMILE machine learning library within Google Earth Engine.\u003c/p\u003e\n"],["\u003cp\u003eThe classifier is trained using labeled data and can be applied to classify images based on the proximity of pixel values to known classes.\u003c/p\u003e\n"],["\u003cp\u003eUsers can customize the number of neighbors (k), search method, and distance metric for the k-NN algorithm.\u003c/p\u003e\n"],["\u003cp\u003eIncludes JavaScript and Python examples demonstrating classifier training and image classification using Landsat 8 data.\u003c/p\u003e\n"]]],[],null,["# ee.Classifier.smileKNN\n\nCreates an empty k-NN classifier.\n\n\u003cbr /\u003e\n\nThe k-nearest neighbor algorithm (k-NN) is a method for classifying objects by a majority vote of its neighbors, with the object being assigned to the class most common amongst its k nearest neighbors (k is a positive integer, typically small, typically odd).\n\n| Usage | Returns |\n|-----------------------------------------------------------------|------------|\n| `ee.Classifier.smileKNN(`*k* `, `*searchMethod* `, `*metric*`)` | Classifier |\n\n| Argument | Type | Details |\n|----------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `k` | Integer, default: 1 | The number of neighbors for classification. |\n| `searchMethod` | String, default: \"AUTO\" | Search method. The following are valid \\[AUTO, LINEAR_SEARCH, KD_TREE, COVER_TREE\\]. AUTO will choose between KD_TREE and COVER_TREE depending on the dimension count. Results may vary between the different search methods for distance ties and probability values. Since performance and results may vary consult with SMILE's documentation and other literature. |\n| `metric` | String, default: \"EUCLIDEAN\" | The distance metric to use. NOTE: KD_TREE (and AUTO for low dimensions) will not use the metric selected. Options are: 'EUCLIDEAN' - Euclidean distance. 'MAHALANOBIS' - Mahalanobis distance. 'MANHATTAN' - Manhattan distance. 'BRAYCURTIS' - Bray-Curtis distance. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Cloud masking for Landsat 8.\nfunction maskL8sr(image) {\n var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);\n var saturationMask = image.select('QA_RADSAT').eq(0);\n\n // Apply the scaling factors to the appropriate bands.\n var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);\n var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);\n\n // Replace the original bands with the scaled ones and apply the masks.\n return image.addBands(opticalBands, null, true)\n .addBands(thermalBands, null, true)\n .updateMask(qaMask)\n .updateMask(saturationMask);\n}\n\n// Map the function over one year of data.\nvar collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\n .filterDate('2020-01-01', '2021-01-01')\n .map(maskL8sr);\n\n// Make a median composite.\nvar composite = collection.median();\n\n// Demonstration labels.\nvar labels = ee.FeatureCollection('projects/google/demo_landcover_labels')\n\n// Use these bands for classification.\nvar bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'];\n// The name of the property on the points storing the class label.\nvar classProperty = 'landcover';\n\n// Sample the composite to generate training data. Note that the\n// class label is stored in the 'landcover' property.\nvar training = composite.select(bands).sampleRegions(\n {collection: labels, properties: [classProperty], scale: 30});\n\n// Train a kNN classifier.\nvar classifier = ee.Classifier.smileKNN(5).train({\n features: training,\n classProperty: classProperty,\n});\n\n// Classify the composite.\nvar classified = composite.classify(classifier);\nMap.setCenter(-122.184, 37.796, 12);\nMap.addLayer(classified, {min: 0, max: 2, palette: ['red', 'green', 'blue']});\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Cloud masking for Landsat 8.\ndef mask_l8_sr(image):\n qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)\n saturation_mask = image.select('QA_RADSAT').eq(0)\n\n # Apply the scaling factors to the appropriate bands.\n optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)\n thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)\n\n # Replace the original bands with the scaled ones and apply the masks.\n return (\n image.addBands(optical_bands, None, True)\n .addBands(thermal_bands, None, True)\n .updateMask(qa_mask)\n .updateMask(saturation_mask)\n )\n\n\n# Map the function over one year of data.\ncollection = (\n ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\n .filterDate('2020-01-01', '2021-01-01')\n .map(mask_l8_sr)\n)\n\n# Make a median composite.\ncomposite = collection.median()\n\n# Demonstration labels.\nlabels = ee.FeatureCollection('projects/google/demo_landcover_labels')\n\n# Use these bands for classification.\nbands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']\n# The name of the property on the points storing the class label.\nclass_property = 'landcover'\n\n# Sample the composite to generate training data. Note that the\n# class label is stored in the 'landcover' property.\ntraining = composite.select(bands).sampleRegions(\n collection=labels, properties=[class_property], scale=30\n)\n\n# Train a kNN classifier.\nclassifier = ee.Classifier.smileKNN(5).train(\n features=training, classProperty=class_property\n)\n\n# Classify the composite.\nclassified = composite.classify(classifier)\n\nm = geemap.Map()\nm.set_center(-122.184, 37.796, 12)\nm.add_layer(\n classified, {'min': 0, 'max': 2, 'palette': ['red', 'green', 'blue']}\n)\nm\n```"]]