ee.Classifier.smileKNN
Zadbaj o dobrą organizację dzięki kolekcji
Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.
Tworzy pusty klasyfikator k-NN.
Algorytm k-najbliższych sąsiadów (k-NN) to metoda klasyfikowania obiektów na podstawie głosowania większości sąsiadów. Obiekt jest przypisywany do klasy najczęściej występującej wśród jego k najbliższych sąsiadów (k to dodatnia liczba całkowita, zwykle mała i nieparzysta).
Wykorzystanie | Zwroty |
---|
ee.Classifier.smileKNN(k, searchMethod, metric) | Klasyfikator |
Argument | Typ | Szczegóły |
---|
k | Liczba całkowita, domyślnie: 1 | Liczba sąsiadów do klasyfikacji. |
searchMethod | Ciąg znaków, domyślnie: „AUTO” | Metoda wyszukiwania. Dozwolone wartości to [AUTO, LINEAR_SEARCH, KD_TREE, COVER_TREE].
W zależności od liczby wymiarów funkcja AUTO wybierze KD_TREE lub COVER_TREE. Wyniki mogą się różnić w zależności od metody wyszukiwania w przypadku remisów dotyczących odległości i wartości prawdopodobieństwa. Wydajność i wyniki mogą się różnić, dlatego zapoznaj się z dokumentacją SMILE i innymi materiałami. |
metric | Ciąg znaków, domyślnie: „EUCLIDEAN” | Wskaźnik odległości do użycia. UWAGA: KD_TREE (i AUTO w przypadku małej liczby wymiarów) nie używa wybranego rodzaju danych. Dostępne opcje:
'MAHALANOBIS' – odległość Mahalanobisa.
„MANHATTAN” – odległość w metryce Manhattan.
'BRAYCURTIS' – odległość Braya-Curtisa. |
Przykłady
Edytor kodu (JavaScript)
// Cloud masking for Landsat 8.
function maskL8sr(image) {
var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
var saturationMask = image.select('QA_RADSAT').eq(0);
// Apply the scaling factors to the appropriate bands.
var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);
// Replace the original bands with the scaled ones and apply the masks.
return image.addBands(opticalBands, null, true)
.addBands(thermalBands, null, true)
.updateMask(qaMask)
.updateMask(saturationMask);
}
// Map the function over one year of data.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
.filterDate('2020-01-01', '2021-01-01')
.map(maskL8sr);
// Make a median composite.
var composite = collection.median();
// Demonstration labels.
var labels = ee.FeatureCollection('projects/google/demo_landcover_labels')
// Use these bands for classification.
var bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'];
// The name of the property on the points storing the class label.
var classProperty = 'landcover';
// Sample the composite to generate training data. Note that the
// class label is stored in the 'landcover' property.
var training = composite.select(bands).sampleRegions(
{collection: labels, properties: [classProperty], scale: 30});
// Train a kNN classifier.
var classifier = ee.Classifier.smileKNN(5).train({
features: training,
classProperty: classProperty,
});
// Classify the composite.
var classified = composite.classify(classifier);
Map.setCenter(-122.184, 37.796, 12);
Map.addLayer(classified, {min: 0, max: 2, palette: ['red', 'green', 'blue']});
Konfiguracja Pythona
Informacje o interfejsie Python API i używaniu geemap
do interaktywnego programowania znajdziesz na stronie
Środowisko Python.
import ee
import geemap.core as geemap
Colab (Python)
# Cloud masking for Landsat 8.
def mask_l8_sr(image):
qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)
saturation_mask = image.select('QA_RADSAT').eq(0)
# Apply the scaling factors to the appropriate bands.
optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)
thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)
# Replace the original bands with the scaled ones and apply the masks.
return (
image.addBands(optical_bands, None, True)
.addBands(thermal_bands, None, True)
.updateMask(qa_mask)
.updateMask(saturation_mask)
)
# Map the function over one year of data.
collection = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
.filterDate('2020-01-01', '2021-01-01')
.map(mask_l8_sr)
)
# Make a median composite.
composite = collection.median()
# Demonstration labels.
labels = ee.FeatureCollection('projects/google/demo_landcover_labels')
# Use these bands for classification.
bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']
# The name of the property on the points storing the class label.
class_property = 'landcover'
# Sample the composite to generate training data. Note that the
# class label is stored in the 'landcover' property.
training = composite.select(bands).sampleRegions(
collection=labels, properties=[class_property], scale=30
)
# Train a kNN classifier.
classifier = ee.Classifier.smileKNN(5).train(
features=training, classProperty=class_property
)
# Classify the composite.
classified = composite.classify(classifier)
m = geemap.Map()
m.set_center(-122.184, 37.796, 12)
m.add_layer(
classified, {'min': 0, 'max': 2, 'palette': ['red', 'green', 'blue']}
)
m
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0, a fragmenty kodu są dostępne na licencji Apache 2.0. Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers. Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
Ostatnia aktualizacja: 2025-07-26 UTC.
[null,null,["Ostatnia aktualizacja: 2025-07-26 UTC."],[[["\u003cp\u003eCreates a k-Nearest Neighbors (k-NN) classifier using the SMILE machine learning library within Google Earth Engine.\u003c/p\u003e\n"],["\u003cp\u003eThe classifier is trained using labeled data and can be applied to classify images based on the proximity of pixel values to known classes.\u003c/p\u003e\n"],["\u003cp\u003eUsers can customize the number of neighbors (k), search method, and distance metric for the k-NN algorithm.\u003c/p\u003e\n"],["\u003cp\u003eIncludes JavaScript and Python examples demonstrating classifier training and image classification using Landsat 8 data.\u003c/p\u003e\n"]]],[],null,["# ee.Classifier.smileKNN\n\nCreates an empty k-NN classifier.\n\n\u003cbr /\u003e\n\nThe k-nearest neighbor algorithm (k-NN) is a method for classifying objects by a majority vote of its neighbors, with the object being assigned to the class most common amongst its k nearest neighbors (k is a positive integer, typically small, typically odd).\n\n| Usage | Returns |\n|-----------------------------------------------------------------|------------|\n| `ee.Classifier.smileKNN(`*k* `, `*searchMethod* `, `*metric*`)` | Classifier |\n\n| Argument | Type | Details |\n|----------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `k` | Integer, default: 1 | The number of neighbors for classification. |\n| `searchMethod` | String, default: \"AUTO\" | Search method. The following are valid \\[AUTO, LINEAR_SEARCH, KD_TREE, COVER_TREE\\]. AUTO will choose between KD_TREE and COVER_TREE depending on the dimension count. Results may vary between the different search methods for distance ties and probability values. Since performance and results may vary consult with SMILE's documentation and other literature. |\n| `metric` | String, default: \"EUCLIDEAN\" | The distance metric to use. NOTE: KD_TREE (and AUTO for low dimensions) will not use the metric selected. Options are: 'EUCLIDEAN' - Euclidean distance. 'MAHALANOBIS' - Mahalanobis distance. 'MANHATTAN' - Manhattan distance. 'BRAYCURTIS' - Bray-Curtis distance. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Cloud masking for Landsat 8.\nfunction maskL8sr(image) {\n var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);\n var saturationMask = image.select('QA_RADSAT').eq(0);\n\n // Apply the scaling factors to the appropriate bands.\n var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);\n var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);\n\n // Replace the original bands with the scaled ones and apply the masks.\n return image.addBands(opticalBands, null, true)\n .addBands(thermalBands, null, true)\n .updateMask(qaMask)\n .updateMask(saturationMask);\n}\n\n// Map the function over one year of data.\nvar collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\n .filterDate('2020-01-01', '2021-01-01')\n .map(maskL8sr);\n\n// Make a median composite.\nvar composite = collection.median();\n\n// Demonstration labels.\nvar labels = ee.FeatureCollection('projects/google/demo_landcover_labels')\n\n// Use these bands for classification.\nvar bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'];\n// The name of the property on the points storing the class label.\nvar classProperty = 'landcover';\n\n// Sample the composite to generate training data. Note that the\n// class label is stored in the 'landcover' property.\nvar training = composite.select(bands).sampleRegions(\n {collection: labels, properties: [classProperty], scale: 30});\n\n// Train a kNN classifier.\nvar classifier = ee.Classifier.smileKNN(5).train({\n features: training,\n classProperty: classProperty,\n});\n\n// Classify the composite.\nvar classified = composite.classify(classifier);\nMap.setCenter(-122.184, 37.796, 12);\nMap.addLayer(classified, {min: 0, max: 2, palette: ['red', 'green', 'blue']});\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Cloud masking for Landsat 8.\ndef mask_l8_sr(image):\n qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)\n saturation_mask = image.select('QA_RADSAT').eq(0)\n\n # Apply the scaling factors to the appropriate bands.\n optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)\n thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)\n\n # Replace the original bands with the scaled ones and apply the masks.\n return (\n image.addBands(optical_bands, None, True)\n .addBands(thermal_bands, None, True)\n .updateMask(qa_mask)\n .updateMask(saturation_mask)\n )\n\n\n# Map the function over one year of data.\ncollection = (\n ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\n .filterDate('2020-01-01', '2021-01-01')\n .map(mask_l8_sr)\n)\n\n# Make a median composite.\ncomposite = collection.median()\n\n# Demonstration labels.\nlabels = ee.FeatureCollection('projects/google/demo_landcover_labels')\n\n# Use these bands for classification.\nbands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']\n# The name of the property on the points storing the class label.\nclass_property = 'landcover'\n\n# Sample the composite to generate training data. Note that the\n# class label is stored in the 'landcover' property.\ntraining = composite.select(bands).sampleRegions(\n collection=labels, properties=[class_property], scale=30\n)\n\n# Train a kNN classifier.\nclassifier = ee.Classifier.smileKNN(5).train(\n features=training, classProperty=class_property\n)\n\n# Classify the composite.\nclassified = composite.classify(classifier)\n\nm = geemap.Map()\nm.set_center(-122.184, 37.796, 12)\nm.add_layer(\n classified, {'min': 0, 'max': 2, 'palette': ['red', 'green', 'blue']}\n)\nm\n```"]]