ee.Clusterer.train
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Trainiert den Clusterer anhand einer Sammlung von Features. Dabei werden die angegebenen numerischen Eigenschaften jedes Features als Trainingsdaten verwendet. Die Geometrie der Features wird ignoriert.
Nutzung | Ausgabe |
---|
Clusterer.train(features, inputProperties, subsampling, subsamplingSeed) | Clusterer |
Argument | Typ | Details |
---|
So gehts: clusterer | Clusterer | Ein Eingabe-Clusterer. |
features | FeatureCollection | Die Sammlung, mit der trainiert werden soll. |
inputProperties | Liste, Standard: null | Die Liste der Attributnamen, die als Trainingsdaten verwendet werden sollen. Jedes Feature muss alle diese Attribute haben und ihre Werte müssen numerisch sein. Dieses Argument ist optional, wenn die Eingabesammlung die Eigenschaft „band_order“ enthält (wie von Image.sample erzeugt). |
subsampling | Gleitkommazahl, Standardwert: 1 | Ein optionaler Subsampling-Faktor im Bereich (0, 1]. |
subsamplingSeed | Ganzzahl, Standardwert: 0 | Ein Randomisierungs-Seed, der für die Teilstichprobenerhebung verwendet werden soll. |
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-07-26 (UTC).
[null,null,["Zuletzt aktualisiert: 2025-07-26 (UTC)."],[[["\u003cp\u003eTrains a clusterer using numeric properties of features, ignoring geometry.\u003c/p\u003e\n"],["\u003cp\u003eRequires a feature collection and optionally specifies input properties for training.\u003c/p\u003e\n"],["\u003cp\u003eAllows for subsampling of the training data using a factor and seed.\u003c/p\u003e\n"],["\u003cp\u003eReturns the trained Clusterer object for further use.\u003c/p\u003e\n"]]],["The `Clusterer.train` method trains a Clusterer using a FeatureCollection. It takes a collection of features and uses their numeric properties as training data, ignoring feature geometry. Users specify `inputProperties` (a list of numeric property names) to be used for training. Subsampling can be employed by setting the `subsampling` (factor between 0 and 1) and optionally, the `subsamplingSeed` to control randomness. The method returns the trained `Clusterer` object.\n"],null,["# ee.Clusterer.train\n\nTrains the Clusterer on a collection of features using the specified numeric properties of each feature as training data. The geometry of the features is ignored.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|------------------------------------------------------------------------------------------|-----------|\n| Clusterer.train`(features, `*inputProperties* `, `*subsampling* `, `*subsamplingSeed*`)` | Clusterer |\n\n| Argument | Type | Details |\n|-------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `clusterer` | Clusterer | An input Clusterer. |\n| `features` | FeatureCollection | The collection to train on. |\n| `inputProperties` | List, default: null | The list of property names to include as training data. Each feature must have all these properties, and their values must be numeric. This argument is optional if the input collection contains a 'band_order' property (as produced by Image.sample). |\n| `subsampling` | Float, default: 1 | An optional subsampling factor, within (0, 1\\]. |\n| `subsamplingSeed` | Integer, default: 0 | A randomization seed to use for subsampling. |"]]