Annuncio: tutti i progetti non commerciali registrati per l'utilizzo di Earth Engine prima del
15 aprile 2025 devono
verificare l'idoneità non commerciale per mantenere l'accesso a Earth Engine.
ee.Clusterer.train
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Addestra Clusterer su una raccolta di funzionalità utilizzando le proprietà numeriche specificate di ciascuna funzionalità come dati di addestramento. La geometria delle funzionalità viene ignorata.
Utilizzo | Resi |
---|
Clusterer.train(features, inputProperties, subsampling, subsamplingSeed) | Clusterer |
Argomento | Tipo | Dettagli |
---|
questo: clusterer | Clusterer | Un clusterizzatore di input. |
features | FeatureCollection | La raccolta su cui eseguire l'addestramento. |
inputProperties | Elenco, valore predefinito: null | L'elenco dei nomi delle proprietà da includere come dati di addestramento. Ogni funzionalità deve avere tutte queste proprietà e i relativi valori devono essere numerici. Questo argomento è facoltativo se la raccolta di input contiene una proprietà "band_order" (come prodotto da Image.sample). |
subsampling | Virgola mobile, valore predefinito: 1 | Un fattore di sottocampionamento facoltativo, compreso tra (0, 1]. |
subsamplingSeed | Numero intero, valore predefinito: 0 | Un seme di randomizzazione da utilizzare per il sottocampionamento. |
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-26 UTC.
[null,null,["Ultimo aggiornamento 2025-07-26 UTC."],[[["\u003cp\u003eTrains a clusterer using numeric properties of features, ignoring geometry.\u003c/p\u003e\n"],["\u003cp\u003eRequires a feature collection and optionally specifies input properties for training.\u003c/p\u003e\n"],["\u003cp\u003eAllows for subsampling of the training data using a factor and seed.\u003c/p\u003e\n"],["\u003cp\u003eReturns the trained Clusterer object for further use.\u003c/p\u003e\n"]]],["The `Clusterer.train` method trains a Clusterer using a FeatureCollection. It takes a collection of features and uses their numeric properties as training data, ignoring feature geometry. Users specify `inputProperties` (a list of numeric property names) to be used for training. Subsampling can be employed by setting the `subsampling` (factor between 0 and 1) and optionally, the `subsamplingSeed` to control randomness. The method returns the trained `Clusterer` object.\n"],null,["# ee.Clusterer.train\n\nTrains the Clusterer on a collection of features using the specified numeric properties of each feature as training data. The geometry of the features is ignored.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|------------------------------------------------------------------------------------------|-----------|\n| Clusterer.train`(features, `*inputProperties* `, `*subsampling* `, `*subsamplingSeed*`)` | Clusterer |\n\n| Argument | Type | Details |\n|-------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `clusterer` | Clusterer | An input Clusterer. |\n| `features` | FeatureCollection | The collection to train on. |\n| `inputProperties` | List, default: null | The list of property names to include as training data. Each feature must have all these properties, and their values must be numeric. This argument is optional if the input collection contains a 'band_order' property (as produced by Image.sample). |\n| `subsampling` | Float, default: 1 | An optional subsampling factor, within (0, 1\\]. |\n| `subsamplingSeed` | Integer, default: 0 | A randomization seed to use for subsampling. |"]]