ee.Clusterer.wekaCobweb
Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
Triển khai thuật toán phân cụm Cobweb. Để biết thêm thông tin, hãy xem:
D. Fisher (1987). Thu thập kiến thức thông qua việc phân cụm khái niệm gia tăng. Học máy. 2(2):139-172 và J. H. Gennari, P. Langley, D. Fisher (1990). Mô hình hình thành khái niệm gia tăng. Trí tuệ nhân tạo. 40:11-61.
Cách sử dụng | Giá trị trả về |
---|
ee.Clusterer.wekaCobweb(acuity, cutoff, seed) | Clusterer |
Đối số | Loại | Thông tin chi tiết |
---|
acuity | Số thực, mặc định: 1 | Độ sắc nét (độ lệch chuẩn tối thiểu). |
cutoff | Độ chính xác đơn, mặc định: 0,002 | Ngưỡng (tiện ích tối thiểu của danh mục). |
seed | Số nguyên, mặc định: 42 | Giá trị gốc của số ngẫu nhiên. |
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-26 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-26 UTC."],[[["\u003cp\u003eImplements the Cobweb clustering algorithm for incremental conceptual clustering.\u003c/p\u003e\n"],["\u003cp\u003eUtilizes acuity and cutoff parameters to control cluster formation based on standard deviation and category utility.\u003c/p\u003e\n"],["\u003cp\u003eOffers flexibility in initialization through a user-defined random number seed.\u003c/p\u003e\n"],["\u003cp\u003eBased on research by Fisher (1987) and Gennari, Langley, & Fisher (1990) in machine learning and artificial intelligence.\u003c/p\u003e\n"]]],["The core content details the implementation of the Cobweb clustering algorithm. It allows users to create a clusterer with the `ee.Clusterer.wekaCobweb` function. This function takes three arguments: `acuity` (minimum standard deviation, default 1), `cutoff` (minimum category utility, default 0.002), and `seed` (random number seed, default 42). The function returns a `Clusterer` object. References to academic papers by Fisher and Gennari, Langley, and Fisher are also provided for more information about the algorithm.\n"],null,["# ee.Clusterer.wekaCobweb\n\nImplementation of the Cobweb clustering algorithm. For more information see:\n\n\u003cbr /\u003e\n\nD. Fisher (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning. 2(2):139-172. and J. H. Gennari, P. Langley, D. Fisher (1990). Models of incremental concept formation. Artificial Intelligence. 40:11-61.\n\n| Usage | Returns |\n|---------------------------------------------------------------|-----------|\n| `ee.Clusterer.wekaCobweb(`*acuity* `, `*cutoff* `, `*seed*`)` | Clusterer |\n\n| Argument | Type | Details |\n|----------|-----------------------|--------------------------------------|\n| `acuity` | Float, default: 1 | Acuity (minimum standard deviation). |\n| `cutoff` | Float, default: 0.002 | Cutoff (minimum category utility). |\n| `seed` | Integer, default: 42 | Random number seed. |"]]