إشعار: يجب
إثبات أهلية جميع المشاريع غير التجارية المسجّلة لاستخدام Earth Engine قبل
15 أبريل 2025 من أجل الحفاظ على إمكانية الوصول إلى Earth Engine.
ee.Clusterer.wekaLVQ
تنظيم صفحاتك في مجموعات
يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.
أداة تجميع عنقودي تنفّذ خوارزمية "تحديد الكمية المتجهة للتعلم". لمزيد من التفاصيل، راجِع:
تي Kohonen, "Learning Vector Quantization", The Handbook of Brain Theory and Neural Networks, 2nd Edition, MIT Press, 2003, pp. 631-634.
الاستخدام | المرتجعات |
---|
ee.Clusterer.wekaLVQ(numClusters, learningRate, epochs, normalizeInput) | أداة التجميع |
الوسيطة | النوع | التفاصيل |
---|
numClusters | عدد صحيح، القيمة التلقائية: 7 | عدد المجموعات. |
learningRate | عدد عائم، القيمة التلقائية: 1 | معدّل التعلّم لخوارزمية التدريب يجب أن تكون القيمة أكبر من 0 وأقل من أو تساوي 1. |
epochs | عدد صحيح، القيمة التلقائية: 1000 | عدد مرات التدريب. يجب أن تكون القيمة أكبر من أو تساوي 1. |
normalizeInput | قيمة منطقية، القيمة التلقائية: false | تخطَّ عملية تسوية السمات. |
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)"],[[["\u003cp\u003eImplements the Learning Vector Quantization (LVQ) algorithm for clustering data.\u003c/p\u003e\n"],["\u003cp\u003eUsers can specify the desired number of clusters, learning rate, training epochs, and input normalization.\u003c/p\u003e\n"],["\u003cp\u003eBased on the Kohonen's work as described in "The Handbook of Brain Theory and Neural Networks".\u003c/p\u003e\n"],["\u003cp\u003eThe algorithm learns by adjusting cluster prototypes based on the input data during training epochs.\u003c/p\u003e\n"],["\u003cp\u003eIt returns a Clusterer object that can be used to predict the cluster assignments for new data points.\u003c/p\u003e\n"]]],["The `ee.Clusterer.wekaLVQ` function implements the Learning Vector Quantization algorithm for clustering. It requires specifying the number of clusters (`numClusters`, default 7), the learning rate (`learningRate`, default 1, between 0 and 1), the number of training epochs (`epochs`, default 1000, at least 1), and whether to normalize the input attributes (`normalizeInput`, default false). The function returns a Clusterer object. The algorithm's details are described in a specific paper by T. Kohonen.\n"],null,["# ee.Clusterer.wekaLVQ\n\nA Clusterer that implements the Learning Vector Quantization algorithm. For more details, see:\n\n\u003cbr /\u003e\n\nT. Kohonen, \"Learning Vector Quantization\", The Handbook of Brain Theory and Neural Networks, 2nd Edition, MIT Press, 2003, pp. 631-634.\n\n| Usage | Returns |\n|----------------------------------------------------------------------------------------------|-----------|\n| `ee.Clusterer.wekaLVQ(`*numClusters* `, `*learningRate* `, `*epochs* `, `*normalizeInput*`)` | Clusterer |\n\n| Argument | Type | Details |\n|------------------|-------------------------|------------------------------------------------------------------------------------------------------|\n| `numClusters` | Integer, default: 7 | The number of clusters. |\n| `learningRate` | Float, default: 1 | The learning rate for the training algorithm. Value should be greater than 0 and less or equal to 1. |\n| `epochs` | Integer, default: 1000 | Number of training epochs. Value should be greater than or equal to 1. |\n| `normalizeInput` | Boolean, default: false | Skip normalizing the attributes. |"]]