ee.ConfusionMatrix.accuracy

Calcule la précision globale d'une matrice de confusion définie comme "correct / total".

UtilisationRenvoie
ConfusionMatrix.accuracy()Float
ArgumentTypeDétails
ceci : confusionMatrixConfusionMatrix

Exemples

Éditeur de code (JavaScript)

// Construct a confusion matrix from an array (rows are actual values,
// columns are predicted values). We construct a confusion matrix here for
// brevity and clear visualization, in most applications the confusion matrix
// will be generated from ee.Classifier.confusionMatrix.
var array = ee.Array([[32, 0, 0,  0,  1, 0],
                      [ 0, 5, 0,  0,  1, 0],
                      [ 0, 0, 1,  3,  0, 0],
                      [ 0, 1, 4, 26,  8, 0],
                      [ 0, 0, 0,  7, 15, 0],
                      [ 0, 0, 0,  1,  0, 5]]);
var confusionMatrix = ee.ConfusionMatrix(array);
print("Constructed confusion matrix", confusionMatrix);

// Calculate overall accuracy.
print("Overall accuracy", confusionMatrix.accuracy());

// Calculate consumer's accuracy, also known as user's accuracy or
// specificity and the complement of commission error (1 − commission error).
print("Consumer's accuracy", confusionMatrix.consumersAccuracy());

// Calculate producer's accuracy, also known as sensitivity and the
// compliment of omission error (1 − omission error).
print("Producer's accuracy", confusionMatrix.producersAccuracy());

// Calculate kappa statistic.
print('Kappa statistic', confusionMatrix.kappa());

Configuration de Python

Consultez la page Environnement Python pour en savoir plus sur l'API Python et sur l'utilisation de geemap pour le développement interactif.

import ee
import geemap.core as geemap

Colab (Python)

from pprint import pprint

# Construct a confusion matrix from an array (rows are actual values,
# columns are predicted values). We construct a confusion matrix here for
# brevity and clear visualization, in most applications the confusion matrix
# will be generated from ee.Classifier.confusionMatrix.
array = ee.Array([[32, 0, 0,  0,  1, 0],
                  [ 0, 5, 0,  0,  1, 0],
                  [ 0, 0, 1,  3,  0, 0],
                  [ 0, 1, 4, 26,  8, 0],
                  [ 0, 0, 0,  7, 15, 0],
                  [ 0, 0, 0,  1,  0, 5]])
confusion_matrix = ee.ConfusionMatrix(array)
print("Constructed confusion matrix:")
pprint(confusion_matrix.getInfo())

# Calculate overall accuracy.
print("Overall accuracy:", confusion_matrix.accuracy().getInfo())

# Calculate consumer's accuracy, also known as user's accuracy or
# specificity and the complement of commission error (1 − commission error).
print("Consumer's accuracy:")
pprint(confusion_matrix.consumersAccuracy().getInfo())

# Calculate producer's accuracy, also known as sensitivity and the
# compliment of omission error (1 − omission error).
print("Producer's accuracy:")
pprint(confusion_matrix.producersAccuracy().getInfo())

# Calculate kappa statistic.
print("Kappa statistic:", confusion_matrix.kappa().getInfo())