ee.ConfusionMatrix
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Crée une matrice de confusion. L'axe 0 (les lignes) de la matrice correspond aux valeurs réelles, et l'axe 1 (les colonnes) aux valeurs prédites.
Utilisation | Renvoie |
---|
ee.ConfusionMatrix(array, order) | ConfusionMatrix |
Argument | Type | Détails |
---|
array | Objet | Tableau carré 2D d'entiers représentant la matrice de confusion. Notez que, contrairement au constructeur ee.Array, cet argument ne peut pas accepter de liste. |
order | Liste, valeur par défaut : null | Taille et ordre des lignes et des colonnes pour les matrices non contiguës ou non nulles. |
Exemples
Éditeur de code (JavaScript)
// A confusion matrix. Rows correspond to actual values, columns to
// predicted values.
var array = ee.Array([[32, 0, 0, 0, 1, 0],
[ 0, 5, 0, 0, 1, 0],
[ 0, 0, 1, 3, 0, 0],
[ 0, 1, 4, 26, 8, 0],
[ 0, 0, 0, 7, 15, 0],
[ 0, 0, 0, 1, 0, 5]]);
print('Constructed confusion matrix',
ee.ConfusionMatrix(array));
// The "order" parameter refers to row and column class labels. When
// unspecified, the class labels are assumed to be a 0-based sequence
// incrementing by 1 with a length equal to row/column size.
print('Default row/column labels (unspecified "order" parameter)',
ee.ConfusionMatrix({array: array, order: null}).order());
// Set the "order" parameter when custom class label integers are required. The
// list of integer value labels should correspond to the matrix axes left to
// right / top to bottom.
var order = [11, 22, 42, 52, 71, 81];
print('Specified row/column labels (specified "order" parameter)',
ee.ConfusionMatrix({array: array, order: order}).order());
Configuration de Python
Consultez la page
Environnement Python pour en savoir plus sur l'API Python et sur l'utilisation de geemap
pour le développement interactif.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# A confusion matrix. Rows correspond to actual values, columns to
# predicted values.
array = ee.Array([[32, 0, 0, 0, 1, 0],
[ 0, 5, 0, 0, 1, 0],
[ 0, 0, 1, 3, 0, 0],
[ 0, 1, 4, 26, 8, 0],
[ 0, 0, 0, 7, 15, 0],
[ 0, 0, 0, 1, 0, 5]])
print('Constructed confusion matrix:')
pprint(ee.ConfusionMatrix(array).getInfo())
# The "order" parameter refers to row and column class labels. When
# unspecified, the class labels are assumed to be a 0-based sequence
# incrementing by 1 with a length equal to row/column size.
print('Default row/column labels (unspecified "order" parameter):',
ee.ConfusionMatrix(array, None).order().getInfo())
# Set the "order" parameter when custom class label integers are required. The
# list of integer value labels should correspond to the matrix axes left to
# right / top to bottom.
order = [11, 22, 42, 52, 71, 81]
print('Specified row/column labels (specified "order" parameter):',
ee.ConfusionMatrix(array, order).order().getInfo())
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[[["\u003cp\u003eCreates a confusion matrix from a 2D array of integers, where rows represent actual values and columns represent predicted values.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003eorder\u003c/code\u003e parameter can be used to specify custom class labels for the rows and columns of the matrix.\u003c/p\u003e\n"],["\u003cp\u003eIf \u003ccode\u003eorder\u003c/code\u003e is not specified, it defaults to a 0-based sequence incrementing by 1.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003eee.ConfusionMatrix\u003c/code\u003e object provides methods for analyzing the confusion matrix.\u003c/p\u003e\n"]]],[],null,["# ee.ConfusionMatrix\n\nCreates a confusion matrix. Axis 0 (the rows) of the matrix correspond to the actual values, and Axis 1 (the columns) to the predicted values.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|----------------------------------------|-----------------|\n| `ee.ConfusionMatrix(array, `*order*`)` | ConfusionMatrix |\n\n| Argument | Type | Details |\n|----------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|\n| `array` | Object | A square, 2D array of integers, representing the confusion matrix. Note that unlike the ee.Array constructor, this argument cannot take a list. |\n| `order` | List, default: null | The row and column size and order, for non-contiguous or non-zero based matrices. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A confusion matrix. Rows correspond to actual values, columns to\n// predicted values.\nvar array = ee.Array([[32, 0, 0, 0, 1, 0],\n [ 0, 5, 0, 0, 1, 0],\n [ 0, 0, 1, 3, 0, 0],\n [ 0, 1, 4, 26, 8, 0],\n [ 0, 0, 0, 7, 15, 0],\n [ 0, 0, 0, 1, 0, 5]]);\nprint('Constructed confusion matrix',\n ee.ConfusionMatrix(array));\n\n// The \"order\" parameter refers to row and column class labels. When\n// unspecified, the class labels are assumed to be a 0-based sequence\n// incrementing by 1 with a length equal to row/column size.\nprint('Default row/column labels (unspecified \"order\" parameter)',\n ee.ConfusionMatrix({array: array, order: null}).order());\n\n// Set the \"order\" parameter when custom class label integers are required. The\n// list of integer value labels should correspond to the matrix axes left to\n// right / top to bottom.\nvar order = [11, 22, 42, 52, 71, 81];\nprint('Specified row/column labels (specified \"order\" parameter)',\n ee.ConfusionMatrix({array: array, order: order}).order());\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\n# A confusion matrix. Rows correspond to actual values, columns to\n# predicted values.\narray = ee.Array([[32, 0, 0, 0, 1, 0],\n [ 0, 5, 0, 0, 1, 0],\n [ 0, 0, 1, 3, 0, 0],\n [ 0, 1, 4, 26, 8, 0],\n [ 0, 0, 0, 7, 15, 0],\n [ 0, 0, 0, 1, 0, 5]])\nprint('Constructed confusion matrix:')\npprint(ee.ConfusionMatrix(array).getInfo())\n\n# The \"order\" parameter refers to row and column class labels. When\n# unspecified, the class labels are assumed to be a 0-based sequence\n# incrementing by 1 with a length equal to row/column size.\nprint('Default row/column labels (unspecified \"order\" parameter):',\n ee.ConfusionMatrix(array, None).order().getInfo())\n\n# Set the \"order\" parameter when custom class label integers are required. The\n# list of integer value labels should correspond to the matrix axes left to\n# right / top to bottom.\norder = [11, 22, 42, 52, 71, 81]\nprint('Specified row/column labels (specified \"order\" parameter):',\n ee.ConfusionMatrix(array, order).order().getInfo())\n```"]]