Pengumuman: Semua project nonkomersial yang terdaftar untuk menggunakan Earth Engine sebelum
15 April 2025 harus
memverifikasi kelayakan nonkomersial untuk mempertahankan akses Earth Engine.
ee.FeatureCollection.aggregate_histogram
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Menggabungkan properti tertentu dari objek dalam koleksi, menghitung histogram properti yang dipilih.
Penggunaan | Hasil |
---|
FeatureCollection.aggregate_histogram(property) | Kamus |
Argumen | Jenis | Detail |
---|
ini: collection | FeatureCollection | Koleksi yang akan digabungkan. |
property | String | Properti yang akan digunakan dari setiap elemen koleksi. |
Contoh
Code Editor (JavaScript)
// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
.filter('country_lg == "Belgium"');
print('Histogram of power plant capacities (MW)',
fc.aggregate_histogram('capacitymw')); // Dictionary
Penyiapan Python
Lihat halaman
Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan
geemap
untuk pengembangan interaktif.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
'country_lg == "Belgium"')
print('Histogram of power plant capacities (MW):')
pprint(fc.aggregate_histogram('capacitymw').getInfo()) # Dictionary
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[[["\u003cp\u003eComputes a histogram for a specified property within a FeatureCollection.\u003c/p\u003e\n"],["\u003cp\u003eReturns a dictionary where keys represent property value ranges and values represent the frequency of features within that range.\u003c/p\u003e\n"],["\u003cp\u003eUseful for understanding the distribution of a specific attribute, such as the capacity of power plants in a region.\u003c/p\u003e\n"]]],["The `aggregate_histogram` method calculates a histogram for a specified property across a FeatureCollection. It takes the collection and the property name as input. The output is a dictionary representing the histogram. In the provided examples, a FeatureCollection of Belgian power plants is used, and a histogram of their capacities (in MW) is generated using `aggregate_histogram('capacitymw')`. The method works on both the Javascript and Python Earth Engine APIs.\n"],null,["# ee.FeatureCollection.aggregate_histogram\n\nAggregates over a given property of the objects in a collection, calculating a histogram of the selected property.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|---------------------------------------------------|------------|\n| FeatureCollection.aggregate_histogram`(property)` | Dictionary |\n\n| Argument | Type | Details |\n|--------------------|-------------------|----------------------------------------------------------|\n| this: `collection` | FeatureCollection | The collection to aggregate over. |\n| `property` | String | The property to use from each element of the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// FeatureCollection of power plants in Belgium.\nvar fc = ee.FeatureCollection('WRI/GPPD/power_plants')\n .filter('country_lg == \"Belgium\"');\n\nprint('Histogram of power plant capacities (MW)',\n fc.aggregate_histogram('capacitymw')); // Dictionary\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\n# FeatureCollection of power plants in Belgium.\nfc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(\n 'country_lg == \"Belgium\"')\n\nprint('Histogram of power plant capacities (MW):')\npprint(fc.aggregate_histogram('capacitymw').getInfo()) # Dictionary\n```"]]