ee.FeatureCollection.aggregate_mean
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Aggregiert über eine bestimmte Eigenschaft der Objekte in einer Sammlung und berechnet den Mittelwert der ausgewählten Eigenschaft.
Nutzung | Ausgabe |
---|
FeatureCollection.aggregate_mean(property) | Zahl |
Argument | Typ | Details |
---|
So gehts: collection | FeatureCollection | Die Sammlung, über die aggregiert werden soll. |
property | String | Die Property, die für jedes Element der Sammlung verwendet werden soll. |
Beispiele
Code-Editor (JavaScript)
// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
.filter('country_lg == "Belgium"');
print('Mean of power plant capacities (MW)',
fc.aggregate_mean('capacitymw')); // 201.342424242
Python einrichten
Informationen zur Python API und zur Verwendung von geemap
für die interaktive Entwicklung finden Sie auf der Seite
Python-Umgebung.
import ee
import geemap.core as geemap
Colab (Python)
# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
'country_lg == "Belgium"')
print('Mean of power plant capacities (MW):',
fc.aggregate_mean('capacitymw').getInfo()) # 201.342424242
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-07-26 (UTC).
[null,null,["Zuletzt aktualisiert: 2025-07-26 (UTC)."],[[["\u003cp\u003eCalculates the mean (average) value of a specified property across all features within a FeatureCollection.\u003c/p\u003e\n"],["\u003cp\u003eAccepts a FeatureCollection and the name of the property to analyze as input.\u003c/p\u003e\n"],["\u003cp\u003eReturns a single numerical value representing the calculated mean.\u003c/p\u003e\n"],["\u003cp\u003eUseful for understanding the central tendency of a property within a dataset, such as average power plant capacity in a region.\u003c/p\u003e\n"]]],["The `aggregate_mean` function calculates the mean of a specified property across a FeatureCollection. It takes the `FeatureCollection` and the `property` name as inputs. The function returns a Number representing the mean value. For example, using a FeatureCollection of power plants, `aggregate_mean('capacitymw')` computes the mean power plant capacity in megawatts. The provided examples showcase how to implement it in both JavaScript and Python environments.\n"],null,["# ee.FeatureCollection.aggregate_mean\n\nAggregates over a given property of the objects in a collection, calculating the mean of the selected property.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|----------------------------------------------|---------|\n| FeatureCollection.aggregate_mean`(property)` | Number |\n\n| Argument | Type | Details |\n|--------------------|-------------------|----------------------------------------------------------|\n| this: `collection` | FeatureCollection | The collection to aggregate over. |\n| `property` | String | The property to use from each element of the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// FeatureCollection of power plants in Belgium.\nvar fc = ee.FeatureCollection('WRI/GPPD/power_plants')\n .filter('country_lg == \"Belgium\"');\n\nprint('Mean of power plant capacities (MW)',\n fc.aggregate_mean('capacitymw')); // 201.342424242\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# FeatureCollection of power plants in Belgium.\nfc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(\n 'country_lg == \"Belgium\"')\n\nprint('Mean of power plant capacities (MW):',\n fc.aggregate_mean('capacitymw').getInfo()) # 201.342424242\n```"]]