ee.FeatureCollection.aggregate_sample_sd
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Agrège une propriété donnée des objets d'une collection, en calculant l'écart-type de l'échantillon des valeurs de la propriété sélectionnée.
Utilisation | Renvoie |
---|
FeatureCollection.aggregate_sample_sd(property) | Nombre |
Argument | Type | Détails |
---|
ceci : collection | FeatureCollection | Collection à agréger. |
property | Chaîne | Propriété à utiliser pour chaque élément de la collection. |
Exemples
Éditeur de code (JavaScript)
// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
.filter('country_lg == "Belgium"');
print('Sample std. deviation of power plant capacities (MW)',
fc.aggregate_sample_sd('capacitymw')); // 466.480889231
Configuration de Python
Consultez la page
Environnement Python pour en savoir plus sur l'API Python et sur l'utilisation de geemap
pour le développement interactif.
import ee
import geemap.core as geemap
Colab (Python)
# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
'country_lg == "Belgium"')
print('Sample std. deviation of power plant capacities (MW):',
fc.aggregate_sample_sd('capacitymw').getInfo()) # 466.480889231
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[[["\u003cp\u003e\u003ccode\u003eaggregate_sample_sd\u003c/code\u003e calculates the sample standard deviation of a specified property within a FeatureCollection.\u003c/p\u003e\n"],["\u003cp\u003eIt takes the FeatureCollection and the property name as input.\u003c/p\u003e\n"],["\u003cp\u003eThe function returns a single numeric value representing the sample standard deviation.\u003c/p\u003e\n"],["\u003cp\u003eThis function is useful for understanding the dispersion or variability of a property within a collection of geographic features.\u003c/p\u003e\n"]]],["The `aggregate_sample_sd` function calculates the sample standard deviation of a specified property across a FeatureCollection. It takes the collection and the property name as input, returning a numerical value representing the standard deviation. For instance, applied to a FeatureCollection of power plants, it can compute the sample standard deviation of their capacities. The example shows calculating the sample standard deviation of power plant `capacitymw` for power plants in Belgium.\n"],null,["# ee.FeatureCollection.aggregate_sample_sd\n\nAggregates over a given property of the objects in a collection, calculating the sample std. deviation of the values of the selected property.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|---------------------------------------------------|---------|\n| FeatureCollection.aggregate_sample_sd`(property)` | Number |\n\n| Argument | Type | Details |\n|--------------------|-------------------|----------------------------------------------------------|\n| this: `collection` | FeatureCollection | The collection to aggregate over. |\n| `property` | String | The property to use from each element of the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// FeatureCollection of power plants in Belgium.\nvar fc = ee.FeatureCollection('WRI/GPPD/power_plants')\n .filter('country_lg == \"Belgium\"');\n\nprint('Sample std. deviation of power plant capacities (MW)',\n fc.aggregate_sample_sd('capacitymw')); // 466.480889231\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# FeatureCollection of power plants in Belgium.\nfc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(\n 'country_lg == \"Belgium\"')\n\nprint('Sample std. deviation of power plant capacities (MW):',\n fc.aggregate_sample_sd('capacitymw').getInfo()) # 466.480889231\n```"]]