إشعار: يجب
إثبات أهلية جميع المشاريع غير التجارية المسجّلة لاستخدام Earth Engine قبل
15 أبريل 2025 من أجل الحفاظ على إمكانية الوصول إلى Earth Engine.
ee.FeatureCollection.aggregate_stats
تنظيم صفحاتك في مجموعات
يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.
تُجري عمليات تجميع على سمة معيّنة للعناصر في مجموعة، وتحسب المجموع والحد الأدنى والحد الأقصى والمتوسط والانحراف المعياري للعيّنة والتباين للعيّنة والانحراف المعياري الإجمالي والتباين الإجمالي للسمة المحدّدة.
الاستخدام | المرتجعات |
---|
FeatureCollection.aggregate_stats(property) | القاموس |
الوسيطة | النوع | التفاصيل |
---|
هذا: collection | FeatureCollection | المجموعة المطلوب تجميعها. |
property | سلسلة | السمة التي سيتم استخدامها من كل عنصر في المجموعة |
أمثلة
محرّر الرموز البرمجية (JavaScript)
// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
.filter('country_lg == "Belgium"');
print('Power plant capacities (MW) summary stats',
fc.aggregate_stats('capacitymw'));
/**
* Expected ee.Dictionary output
*
* {
* "max": 2910,
* "mean": 201.34242424242427,
* "min": 1.8,
* "sample_sd": 466.4808892319684,
* "sample_var": 217604.42001864797,
* "sum": 13288.600000000002,
* "sum_sq": 16819846.24,
* "total_count": 66,
* "total_sd": 462.9334545609107,
* "total_var": 214307.38335169878,
* "valid_count": 66,
* "weight_sum": 66,
* "weighted_sum": 13288.600000000002
* }
*/
إعداد Python
راجِع صفحة
بيئة Python للحصول على معلومات حول واجهة برمجة التطبيقات Python واستخدام
geemap
للتطوير التفاعلي.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
'country_lg == "Belgium"')
print('Power plant capacities (MW) summary stats:')
pprint(fc.aggregate_stats('capacitymw').getInfo())
# Expected ee.Dictionary output
# {
# "max": 2910,
# "mean": 201.34242424242427,
# "min": 1.8,
# "sample_sd": 466.4808892319684,
# "sample_var": 217604.42001864797,
# "sum": 13288.600000000002,
# "sum_sq": 16819846.24,
# "total_count": 66,
# "total_sd": 462.9334545609107,
# "total_var": 214307.38335169878,
# "valid_count": 66,
# "weight_sum": 66,
# "weighted_sum": 13288.600000000002
# }
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)"],[[["\u003cp\u003eCalculates descriptive statistics (sum, min, max, mean, standard deviation, and variance) for a specified property within a FeatureCollection.\u003c/p\u003e\n"],["\u003cp\u003eAccepts a FeatureCollection and the property name as input.\u003c/p\u003e\n"],["\u003cp\u003eReturns a dictionary containing the calculated statistics.\u003c/p\u003e\n"],["\u003cp\u003eUseful for understanding the distribution and central tendency of a property across features.\u003c/p\u003e\n"],["\u003cp\u003eExamples demonstrate using the function with power plant data to calculate capacity statistics.\u003c/p\u003e\n"]]],[],null,["# ee.FeatureCollection.aggregate_stats\n\nAggregates over a given property of the objects in a collection, calculating the sum, min, max, mean, sample standard deviation, sample variance, total standard deviation and total variance of the selected property.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-----------------------------------------------|------------|\n| FeatureCollection.aggregate_stats`(property)` | Dictionary |\n\n| Argument | Type | Details |\n|--------------------|-------------------|----------------------------------------------------------|\n| this: `collection` | FeatureCollection | The collection to aggregate over. |\n| `property` | String | The property to use from each element of the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// FeatureCollection of power plants in Belgium.\nvar fc = ee.FeatureCollection('WRI/GPPD/power_plants')\n .filter('country_lg == \"Belgium\"');\n\nprint('Power plant capacities (MW) summary stats',\n fc.aggregate_stats('capacitymw'));\n\n/**\n * Expected ee.Dictionary output\n *\n * {\n * \"max\": 2910,\n * \"mean\": 201.34242424242427,\n * \"min\": 1.8,\n * \"sample_sd\": 466.4808892319684,\n * \"sample_var\": 217604.42001864797,\n * \"sum\": 13288.600000000002,\n * \"sum_sq\": 16819846.24,\n * \"total_count\": 66,\n * \"total_sd\": 462.9334545609107,\n * \"total_var\": 214307.38335169878,\n * \"valid_count\": 66,\n * \"weight_sum\": 66,\n * \"weighted_sum\": 13288.600000000002\n * }\n */\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\n# FeatureCollection of power plants in Belgium.\nfc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(\n 'country_lg == \"Belgium\"')\n\nprint('Power plant capacities (MW) summary stats:')\npprint(fc.aggregate_stats('capacitymw').getInfo())\n\n# Expected ee.Dictionary output\n\n# {\n# \"max\": 2910,\n# \"mean\": 201.34242424242427,\n# \"min\": 1.8,\n# \"sample_sd\": 466.4808892319684,\n# \"sample_var\": 217604.42001864797,\n# \"sum\": 13288.600000000002,\n# \"sum_sq\": 16819846.24,\n# \"total_count\": 66,\n# \"total_sd\": 462.9334545609107,\n# \"total_var\": 214307.38335169878,\n# \"valid_count\": 66,\n# \"weight_sum\": 66,\n# \"weighted_sum\": 13288.600000000002\n# }\n```"]]