ee.FeatureCollection.aggregate_stats
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Agrège une propriété donnée des objets d'une collection, en calculant la somme, le min, le max, la moyenne, l'écart type de l'échantillon, la variance de l'échantillon, l'écart type total et la variance totale de la propriété sélectionnée.
Utilisation | Renvoie |
---|
FeatureCollection.aggregate_stats(property) | Dictionnaire |
Argument | Type | Détails |
---|
ceci : collection | FeatureCollection | Collection à agréger. |
property | Chaîne | Propriété à utiliser pour chaque élément de la collection. |
Exemples
Éditeur de code (JavaScript)
// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
.filter('country_lg == "Belgium"');
print('Power plant capacities (MW) summary stats',
fc.aggregate_stats('capacitymw'));
/**
* Expected ee.Dictionary output
*
* {
* "max": 2910,
* "mean": 201.34242424242427,
* "min": 1.8,
* "sample_sd": 466.4808892319684,
* "sample_var": 217604.42001864797,
* "sum": 13288.600000000002,
* "sum_sq": 16819846.24,
* "total_count": 66,
* "total_sd": 462.9334545609107,
* "total_var": 214307.38335169878,
* "valid_count": 66,
* "weight_sum": 66,
* "weighted_sum": 13288.600000000002
* }
*/
Configuration de Python
Consultez la page
Environnement Python pour en savoir plus sur l'API Python et sur l'utilisation de geemap
pour le développement interactif.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
'country_lg == "Belgium"')
print('Power plant capacities (MW) summary stats:')
pprint(fc.aggregate_stats('capacitymw').getInfo())
# Expected ee.Dictionary output
# {
# "max": 2910,
# "mean": 201.34242424242427,
# "min": 1.8,
# "sample_sd": 466.4808892319684,
# "sample_var": 217604.42001864797,
# "sum": 13288.600000000002,
# "sum_sq": 16819846.24,
# "total_count": 66,
# "total_sd": 462.9334545609107,
# "total_var": 214307.38335169878,
# "valid_count": 66,
# "weight_sum": 66,
# "weighted_sum": 13288.600000000002
# }
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[[["\u003cp\u003eCalculates descriptive statistics (sum, min, max, mean, standard deviation, and variance) for a specified property within a FeatureCollection.\u003c/p\u003e\n"],["\u003cp\u003eAccepts a FeatureCollection and the property name as input.\u003c/p\u003e\n"],["\u003cp\u003eReturns a dictionary containing the calculated statistics.\u003c/p\u003e\n"],["\u003cp\u003eUseful for understanding the distribution and central tendency of a property across features.\u003c/p\u003e\n"],["\u003cp\u003eExamples demonstrate using the function with power plant data to calculate capacity statistics.\u003c/p\u003e\n"]]],[],null,["# ee.FeatureCollection.aggregate_stats\n\nAggregates over a given property of the objects in a collection, calculating the sum, min, max, mean, sample standard deviation, sample variance, total standard deviation and total variance of the selected property.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-----------------------------------------------|------------|\n| FeatureCollection.aggregate_stats`(property)` | Dictionary |\n\n| Argument | Type | Details |\n|--------------------|-------------------|----------------------------------------------------------|\n| this: `collection` | FeatureCollection | The collection to aggregate over. |\n| `property` | String | The property to use from each element of the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// FeatureCollection of power plants in Belgium.\nvar fc = ee.FeatureCollection('WRI/GPPD/power_plants')\n .filter('country_lg == \"Belgium\"');\n\nprint('Power plant capacities (MW) summary stats',\n fc.aggregate_stats('capacitymw'));\n\n/**\n * Expected ee.Dictionary output\n *\n * {\n * \"max\": 2910,\n * \"mean\": 201.34242424242427,\n * \"min\": 1.8,\n * \"sample_sd\": 466.4808892319684,\n * \"sample_var\": 217604.42001864797,\n * \"sum\": 13288.600000000002,\n * \"sum_sq\": 16819846.24,\n * \"total_count\": 66,\n * \"total_sd\": 462.9334545609107,\n * \"total_var\": 214307.38335169878,\n * \"valid_count\": 66,\n * \"weight_sum\": 66,\n * \"weighted_sum\": 13288.600000000002\n * }\n */\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\n# FeatureCollection of power plants in Belgium.\nfc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(\n 'country_lg == \"Belgium\"')\n\nprint('Power plant capacities (MW) summary stats:')\npprint(fc.aggregate_stats('capacitymw').getInfo())\n\n# Expected ee.Dictionary output\n\n# {\n# \"max\": 2910,\n# \"mean\": 201.34242424242427,\n# \"min\": 1.8,\n# \"sample_sd\": 466.4808892319684,\n# \"sample_var\": 217604.42001864797,\n# \"sum\": 13288.600000000002,\n# \"sum_sq\": 16819846.24,\n# \"total_count\": 66,\n# \"total_sd\": 462.9334545609107,\n# \"total_var\": 214307.38335169878,\n# \"valid_count\": 66,\n# \"weight_sum\": 66,\n# \"weighted_sum\": 13288.600000000002\n# }\n```"]]