ee.FeatureCollection.aggregate_stats

Aggrega una determinata proprietà degli oggetti in una raccolta, calcolando la somma, il minimo, il massimo, la media, la deviazione standard del campione, la varianza del campione, la deviazione standard totale e la varianza totale della proprietà selezionata.

UtilizzoResi
FeatureCollection.aggregate_stats(property)Dizionario
ArgomentoTipoDettagli
questo: collectionFeatureCollectionLa raccolta su cui eseguire l'aggregazione.
propertyStringaLa proprietà da utilizzare per ogni elemento della raccolta.

Esempi

Editor di codice (JavaScript)

// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
             .filter('country_lg == "Belgium"');

print('Power plant capacities (MW) summary stats',
      fc.aggregate_stats('capacitymw'));

/**
 * Expected ee.Dictionary output
 *
 * {
 *   "max": 2910,
 *   "mean": 201.34242424242427,
 *   "min": 1.8,
 *   "sample_sd": 466.4808892319684,
 *   "sample_var": 217604.42001864797,
 *   "sum": 13288.600000000002,
 *   "sum_sq": 16819846.24,
 *   "total_count": 66,
 *   "total_sd": 462.9334545609107,
 *   "total_var": 214307.38335169878,
 *   "valid_count": 66,
 *   "weight_sum": 66,
 *   "weighted_sum": 13288.600000000002
 * }
 */

Configurazione di Python

Consulta la pagina Ambiente Python per informazioni sull'API Python e sull'utilizzo di geemap per lo sviluppo interattivo.

import ee
import geemap.core as geemap

Colab (Python)

from pprint import pprint

# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
    'country_lg == "Belgium"')

print('Power plant capacities (MW) summary stats:')
pprint(fc.aggregate_stats('capacitymw').getInfo())

# Expected ee.Dictionary output

#  {
#   "max": 2910,
#    "mean": 201.34242424242427,
#    "min": 1.8,
#    "sample_sd": 466.4808892319684,
#    "sample_var": 217604.42001864797,
#    "sum": 13288.600000000002,
#    "sum_sq": 16819846.24,
#    "total_count": 66,
#    "total_sd": 462.9334545609107,
#    "total_var": 214307.38335169878,
#    "valid_count": 66,
#    "weight_sum": 66,
#    "weighted_sum": 13288.600000000002
#  }