إشعار: يجب
إثبات أهلية جميع المشاريع غير التجارية المسجّلة لاستخدام Earth Engine قبل
15 أبريل 2025 من أجل الحفاظ على إمكانية الوصول إلى Earth Engine.
ee.FeatureCollection.aggregate_total_sd
تنظيم صفحاتك في مجموعات
يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.
تُجمِّع هذه الدالة البيانات حسب سمة معيّنة للعناصر في مجموعة، وتحسب إجمالي الانحراف المعياري لقيم السمة المحدّدة.
الاستخدام | المرتجعات |
---|
FeatureCollection.aggregate_total_sd(property) | العدد |
الوسيطة | النوع | التفاصيل |
---|
هذا: collection | FeatureCollection | المجموعة المطلوب تجميعها. |
property | سلسلة | السمة التي سيتم استخدامها من كل عنصر في المجموعة |
أمثلة
محرّر الرموز البرمجية (JavaScript)
// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
.filter('country_lg == "Belgium"');
print('Total std. deviation of power plant capacities (MW)',
fc.aggregate_total_sd('capacitymw')); // 462.9334545609107
إعداد Python
راجِع صفحة
بيئة Python للحصول على معلومات حول واجهة برمجة التطبيقات Python واستخدام
geemap
للتطوير التفاعلي.
import ee
import geemap.core as geemap
Colab (Python)
# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
'country_lg == "Belgium"')
print('Total std. deviation of power plant capacities (MW):',
fc.aggregate_total_sd('capacitymw').getInfo()) # 462.9334545609107
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)"],[[["\u003cp\u003e\u003ccode\u003eaggregate_total_sd\u003c/code\u003e calculates the total standard deviation of a specified property across all features within a FeatureCollection.\u003c/p\u003e\n"],["\u003cp\u003eIt takes a FeatureCollection and the property name as input, returning the total standard deviation as a number.\u003c/p\u003e\n"],["\u003cp\u003eThis function is useful for understanding the dispersion or variability of a specific property within a dataset, like the capacities of power plants in a region.\u003c/p\u003e\n"]]],["The `aggregate_total_sd` function calculates the total standard deviation of a specified property across a FeatureCollection. It takes the collection and the property name as input, returning a numerical value representing the total standard deviation. In practice, you can use the function to calculate the total standard deviation of power plant capacities (MW) in a given Feature Collection, as shown in the provided examples. Both Python and JavaScript code snippets are available.\n"],null,["# ee.FeatureCollection.aggregate_total_sd\n\nAggregates over a given property of the objects in a collection, calculating the total std. deviation of the values of the selected property.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------|---------|\n| FeatureCollection.aggregate_total_sd`(property)` | Number |\n\n| Argument | Type | Details |\n|--------------------|-------------------|----------------------------------------------------------|\n| this: `collection` | FeatureCollection | The collection to aggregate over. |\n| `property` | String | The property to use from each element of the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// FeatureCollection of power plants in Belgium.\nvar fc = ee.FeatureCollection('WRI/GPPD/power_plants')\n .filter('country_lg == \"Belgium\"');\n\nprint('Total std. deviation of power plant capacities (MW)',\n fc.aggregate_total_sd('capacitymw')); // 462.9334545609107\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# FeatureCollection of power plants in Belgium.\nfc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(\n 'country_lg == \"Belgium\"')\n\nprint('Total std. deviation of power plant capacities (MW):',\n fc.aggregate_total_sd('capacitymw').getInfo()) # 462.9334545609107\n```"]]