Pengumuman: Semua project nonkomersial yang terdaftar untuk menggunakan Earth Engine sebelum
15 April 2025 harus
memverifikasi kelayakan nonkomersial untuk mempertahankan akses Earth Engine.
ee.FeatureCollection.cluster
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Mengelompokkan setiap fitur dalam koleksi, menambahkan kolom baru ke setiap fitur yang berisi nomor cluster yang telah ditetapkan.
Penggunaan | Hasil |
---|
FeatureCollection.cluster(clusterer, outputName) | FeatureCollection |
Argumen | Jenis | Detail |
---|
ini: features | FeatureCollection | Kumpulan fitur yang akan dikelompokkan. Setiap fitur harus berisi semua properti dalam skema pengelompokan. |
clusterer | Pengelompok | Pengelompok yang akan digunakan. |
outputName | String, default: "cluster" | Nama properti output yang akan ditambahkan. |
Contoh
Code Editor (JavaScript)
// Import a Sentinel-2 surface reflectance image.
var image = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG');
// Get the image geometry to define the geographical bounds of a point sample.
var imageBounds = image.geometry();
// Sample the image at a set of random points; a feature collection is returned.
var pointSampleFc = image.sample(
{region: imageBounds, scale: 20, numPixels: 1000, geometries: true});
// Instantiate a k-means clusterer and train it.
var clusterer = ee.Clusterer.wekaKMeans(5).train(pointSampleFc);
// Cluster the input using the trained clusterer; optionally specify the name
// of the output cluster ID property.
var clusteredFc = pointSampleFc.cluster(clusterer, 'spectral_cluster');
print('Note added "spectral_cluster" property for an example feature',
clusteredFc.first().toDictionary());
// Visualize the clusters by applying a unique color to each cluster ID.
var palette = ee.List(['8dd3c7', 'ffffb3', 'bebada', 'fb8072', '80b1d3']);
var clusterVis = clusteredFc.map(function(feature) {
return feature.set('style', {
color: palette.get(feature.get('spectral_cluster')),
});
}).style({styleProperty: 'style'});
// Display the points colored by cluster ID with the S2 image.
Map.setCenter(-122.35, 37.47, 9);
Map.addLayer(image, {bands: ['B4', 'B3', 'B2'], min: 0, max: 1500}, 'S2 image');
Map.addLayer(clusterVis, null, 'Clusters');
Penyiapan Python
Lihat halaman
Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan
geemap
untuk pengembangan interaktif.
import ee
import geemap.core as geemap
Colab (Python)
# Import a Sentinel-2 surface reflectance image.
image = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')
# Get the image geometry to define the geographical bounds of a point sample.
image_bounds = image.geometry()
# Sample the image at a set of random points a feature collection is returned.
point_sample_fc = image.sample(
region=image_bounds, scale=20, numPixels=1000, geometries=True
)
# Instantiate a k-means clusterer and train it.
clusterer = ee.Clusterer.wekaKMeans(5).train(point_sample_fc)
# Cluster the input using the trained clusterer optionally specify the name
# of the output cluster ID property.
clustered_fc = point_sample_fc.cluster(clusterer, 'spectral_cluster')
display(
'Note added "spectral_cluster" property for an example feature',
clustered_fc.first().toDictionary(),
)
# Visualize the clusters by applying a unique color to each cluster ID.
palette = ee.List(['8dd3c7', 'ffffb3', 'bebada', 'fb8072', '80b1d3'])
cluster_vis = clustered_fc.map(
lambda feature: feature.set(
'style', {'color': palette.get(feature.get('spectral_cluster'))}
)
).style(styleProperty='style')
# Display the points colored by cluster ID with the S2 image.
m = geemap.Map()
m.set_center(-122.35, 37.47, 9)
m.add_layer(
image, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 1500}, 'S2 image'
)
m.add_layer(cluster_vis, None, 'Clusters')
m
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[[["\u003cp\u003eGroups features within a collection into clusters based on a provided clusterer.\u003c/p\u003e\n"],["\u003cp\u003eAssigns each feature a cluster ID, stored in a new property with a user-defined name (defaults to "cluster").\u003c/p\u003e\n"],["\u003cp\u003eRequires a trained clusterer and a FeatureCollection where each feature contains the necessary properties for clustering.\u003c/p\u003e\n"],["\u003cp\u003eReturns a new FeatureCollection with the added cluster ID property.\u003c/p\u003e\n"]]],[],null,["# ee.FeatureCollection.cluster\n\nClusters each feature in a collection, adding a new column to each feature containing the cluster number to which it has been assigned.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------------|-------------------|\n| FeatureCollection.cluster`(clusterer, `*outputName*`)` | FeatureCollection |\n\n| Argument | Type | Details |\n|------------------|----------------------------|----------------------------------------------------------------------------------------------------------------|\n| this: `features` | FeatureCollection | The collection of features to cluster. Each feature must contain all the properties in the clusterer's schema. |\n| `clusterer` | Clusterer | The clusterer to use. |\n| `outputName` | String, default: \"cluster\" | The name of the output property to be added. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Import a Sentinel-2 surface reflectance image.\nvar image = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG');\n\n// Get the image geometry to define the geographical bounds of a point sample.\nvar imageBounds = image.geometry();\n\n// Sample the image at a set of random points; a feature collection is returned.\nvar pointSampleFc = image.sample(\n {region: imageBounds, scale: 20, numPixels: 1000, geometries: true});\n\n// Instantiate a k-means clusterer and train it.\nvar clusterer = ee.Clusterer.wekaKMeans(5).train(pointSampleFc);\n\n// Cluster the input using the trained clusterer; optionally specify the name\n// of the output cluster ID property.\nvar clusteredFc = pointSampleFc.cluster(clusterer, 'spectral_cluster');\n\nprint('Note added \"spectral_cluster\" property for an example feature',\n clusteredFc.first().toDictionary());\n\n// Visualize the clusters by applying a unique color to each cluster ID.\nvar palette = ee.List(['8dd3c7', 'ffffb3', 'bebada', 'fb8072', '80b1d3']);\nvar clusterVis = clusteredFc.map(function(feature) {\n return feature.set('style', {\n color: palette.get(feature.get('spectral_cluster')),\n });\n}).style({styleProperty: 'style'});\n\n// Display the points colored by cluster ID with the S2 image.\nMap.setCenter(-122.35, 37.47, 9);\nMap.addLayer(image, {bands: ['B4', 'B3', 'B2'], min: 0, max: 1500}, 'S2 image');\nMap.addLayer(clusterVis, null, 'Clusters');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Import a Sentinel-2 surface reflectance image.\nimage = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')\n\n# Get the image geometry to define the geographical bounds of a point sample.\nimage_bounds = image.geometry()\n\n# Sample the image at a set of random points a feature collection is returned.\npoint_sample_fc = image.sample(\n region=image_bounds, scale=20, numPixels=1000, geometries=True\n)\n\n# Instantiate a k-means clusterer and train it.\nclusterer = ee.Clusterer.wekaKMeans(5).train(point_sample_fc)\n\n# Cluster the input using the trained clusterer optionally specify the name\n# of the output cluster ID property.\nclustered_fc = point_sample_fc.cluster(clusterer, 'spectral_cluster')\n\ndisplay(\n 'Note added \"spectral_cluster\" property for an example feature',\n clustered_fc.first().toDictionary(),\n)\n\n# Visualize the clusters by applying a unique color to each cluster ID.\npalette = ee.List(['8dd3c7', 'ffffb3', 'bebada', 'fb8072', '80b1d3'])\ncluster_vis = clustered_fc.map(\n lambda feature: feature.set(\n 'style', {'color': palette.get(feature.get('spectral_cluster'))}\n )\n).style(styleProperty='style')\n\n# Display the points colored by cluster ID with the S2 image.\nm = geemap.Map()\nm.set_center(-122.35, 37.47, 9)\nm.add_layer(\n image, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 1500}, 'S2 image'\n)\nm.add_layer(cluster_vis, None, 'Clusters')\nm\n```"]]