ee.FeatureCollection.errorMatrix

Calcule une matrice d'erreur 2D pour une collection en comparant deux colonnes de la collection : l'une contenant les valeurs réelles et l'autre contenant les valeurs prédites. Les valeurs doivent être de petits nombres entiers contigus, à partir de 0. L'axe 0 (les lignes) de la matrice correspond aux valeurs réelles, et l'axe 1 (les colonnes) aux valeurs prédites.

UtilisationRenvoie
FeatureCollection.errorMatrix(actual, predicted, order)ConfusionMatrix
ArgumentTypeDétails
ceci : collectionFeatureCollectionCollection d'entrées.
actualChaîneNom de la propriété contenant la valeur réelle.
predictedChaîneNom de la propriété contenant la valeur prédite.
orderListe, valeur par défaut : nullListe des valeurs attendues. Si cet argument n'est pas spécifié, les valeurs sont considérées comme contiguës et couvrent la plage allant de 0 à maxValue. Si elle est spécifiée, seules les valeurs correspondant à cette liste sont utilisées, et la matrice aura des dimensions et un ordre correspondant à cette liste.

Exemples

Éditeur de code (JavaScript)

/**
 * Classifies features in a FeatureCollection and computes an error matrix.
 */

// Combine Landsat and NLCD images using only the bands representing
// predictor variables (spectral reflectance) and target labels (land cover).
var spectral =
    ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820').select('SR_B[1-7]');
var landcover =
    ee.Image('USGS/NLCD_RELEASES/2016_REL/2016').select('landcover');
var sampleSource = spectral.addBands(landcover);

// Sample the combined images to generate a FeatureCollection.
var sample = sampleSource.sample({
  region: spectral.geometry(),  // sample only from within Landsat image extent
  scale: 30,
  numPixels: 2000,
  geometries: true
})
// Add a random value column with uniform distribution for hold-out
// training/validation splitting.
.randomColumn({distribution: 'uniform'});
print('Sample for classifier development', sample);

// Split out ~80% of the sample for training the classifier.
var training = sample.filter('random < 0.8');
print('Training set', training);

// Train a random forest classifier.
var classifier = ee.Classifier.smileRandomForest(10).train({
  features: training,
  classProperty: landcover.bandNames().get(0),
  inputProperties: spectral.bandNames()
});

// Classify the sample.
var predictions = sample.classify(
    {classifier: classifier, outputName: 'predicted_landcover'});
print('Predictions', predictions);

// Split out the validation feature set.
var validation = predictions.filter('random >= 0.8');
print('Validation set', validation);

// Get a list of possible class values to use for error matrix axis labels.
var order = sample.aggregate_array('landcover').distinct().sort();
print('Error matrix axis labels', order);

// Compute an error matrix that compares predicted vs. expected values.
var errorMatrix = validation.errorMatrix({
  actual: landcover.bandNames().get(0),
  predicted: 'predicted_landcover',
  order: order
});
print('Error matrix', errorMatrix);

// Compute accuracy metrics from the error matrix.
print("Overall accuracy", errorMatrix.accuracy());
print("Consumer's accuracy", errorMatrix.consumersAccuracy());
print("Producer's accuracy", errorMatrix.producersAccuracy());
print("Kappa", errorMatrix.kappa());

Configuration de Python

Consultez la page Environnement Python pour en savoir plus sur l'API Python et sur l'utilisation de geemap pour le développement interactif.

import ee
import geemap.core as geemap

Colab (Python)

from pprint import pprint

# Classifies features in a FeatureCollection and computes an error matrix.

# Combine Landsat and NLCD images using only the bands representing
# predictor variables (spectral reflectance) and target labels (land cover).
spectral = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820').select(
    'SR_B[1-7]')
landcover = ee.Image('USGS/NLCD_RELEASES/2016_REL/2016').select('landcover')
sample_source = spectral.addBands(landcover)

# Sample the combined images to generate a FeatureCollection.
sample = sample_source.sample(**{
    # sample only from within Landsat image extent
    'region': spectral.geometry(),
    'scale': 30,
    'numPixels': 2000,
    'geometries': True
    })
# Add a random value column with uniform distribution for hold-out
# training/validation splitting.
sample = sample.randomColumn(**{'distribution': 'uniform'})
print('Sample for classifier development:', sample.getInfo())

# Split out ~80% of the sample for training the classifier.
training = sample.filter('random < 0.8')
print('Training set:', training.getInfo())

# Train a random forest classifier.
classifier = ee.Classifier.smileRandomForest(10).train(**{
    'features': training,
    'classProperty': landcover.bandNames().get(0),
    'inputProperties': spectral.bandNames()
    })

# Classify the sample.
predictions = sample.classify(
    **{'classifier': classifier, 'outputName': 'predicted_landcover'})
print('Predictions:', predictions.getInfo())

# Split out the validation feature set.
validation = predictions.filter('random >= 0.8')
print('Validation set:', validation.getInfo())

# Get a list of possible class values to use for error matrix axis labels.
order = sample.aggregate_array('landcover').distinct().sort()
print('Error matrix axis labels:')
pprint(order.getInfo())

# Compute an error matrix that compares predicted vs. expected values.
error_matrix = validation.errorMatrix(**{
    'actual': landcover.bandNames().get(0),
    'predicted': 'predicted_landcover',
    'order': order
    })
print('Error matrix:')
pprint(error_matrix.getInfo())

# Compute accuracy metrics from the error matrix.
print('Overall accuracy:', error_matrix.accuracy().getInfo())
print('Consumer\'s accuracy:')
pprint(error_matrix.consumersAccuracy().getInfo())
print('Producer\'s accuracy:')
pprint(error_matrix.producersAccuracy().getInfo())
print('Kappa:', error_matrix.kappa().getInfo())