ee.FeatureCollection.flatten
با مجموعهها، منظم بمانید
ذخیره و طبقهبندی محتوا براساس اولویتهای شما.
مجموعه ای از مجموعه ها را مسطح می کند.
استفاده | برمی گرداند | FeatureCollection. flatten () | مجموعه ویژگی ها |
استدلال | تایپ کنید | جزئیات | این: collection | مجموعه ویژگی ها | مجموعه ورودی مجموعه ها |
نمونه ها
ویرایشگر کد (جاوا اسکریپت)
// Counties in New Mexico, USA.
var counties = ee.FeatureCollection('TIGER/2018/Counties')
.filter('STATEFP == "35"');
// Monthly climate and climatic water balance surfaces for January 2020.
var climate = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE')
.filterDate('2020-01', '2020-02');
// Calculate mean climate variables for each county per climate surface
// time step. The result is a FeatureCollection of FeatureCollections.
var countiesClimate = climate.map(function(image) {
return image.reduceRegions({
collection: counties,
reducer: ee.Reducer.mean(),
scale: 5000,
crs: 'EPSG:4326'
});
});
// Note that a printed FeatureCollection of FeatureCollections is not
// recursively expanded, you cannot view metadata of the features within the
// nested collections until you isolate a single collection or flatten the
// collections.
print('FeatureCollection of FeatureCollections', countiesClimate);
print('Flattened FeatureCollection of FeatureCollections',
countiesClimate.flatten());
راه اندازی پایتون
برای اطلاعات در مورد API پایتون و استفاده از geemap
برای توسعه تعاملی به صفحه محیط پایتون مراجعه کنید.
import ee
import geemap.core as geemap
کولب (پایتون)
# Counties in New Mexico, USA.
counties = ee.FeatureCollection('TIGER/2018/Counties').filter('STATEFP == "35"')
# Monthly climate and climatic water balance surfaces for January 2020.
climate = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE').filterDate(
'2020-01', '2020-02')
# Calculate mean climate variables for each county per climate surface
# time step. The result is a FeatureCollection of FeatureCollections.
def reduce_mean(image):
return image.reduceRegions(**{
'collection': counties,
'reducer': ee.Reducer.mean(),
'scale': 5000,
'crs': 'EPSG:4326'
})
counties_climate = climate.map(reduce_mean)
# Note that a printed FeatureCollection of FeatureCollections is not
# recursively expanded, you cannot view metadata of the features within the
# nested collections until you isolate a single collection or flatten the
# collections.
print('FeatureCollection of FeatureCollections:', counties_climate.getInfo())
print('Flattened FeatureCollection of FeatureCollections:',
counties_climate.flatten().getInfo())
جز در مواردی که غیر از این ذکر شده باشد،محتوای این صفحه تحت مجوز Creative Commons Attribution 4.0 License است. نمونه کدها نیز دارای مجوز Apache 2.0 License است. برای اطلاع از جزئیات، به خطمشیهای سایت Google Developers مراجعه کنید. جاوا علامت تجاری ثبتشده Oracle و/یا شرکتهای وابسته به آن است.
تاریخ آخرین بهروزرسانی 2025-07-24 بهوقت ساعت هماهنگ جهانی.
[null,null,["تاریخ آخرین بهروزرسانی 2025-07-24 بهوقت ساعت هماهنگ جهانی."],[],["The `flatten()` method transforms a nested `FeatureCollection` of `FeatureCollections` into a single, flat `FeatureCollection`. It takes a `FeatureCollection` as input and returns a flattened `FeatureCollection`. This allows for the metadata of features within the nested collections to be viewed, which is not possible with unflattened collections. An example demonstrates calculating mean climate variables for counties per climate surface timestep and then flattening the resulting nested collection.\n"]]