Annuncio: tutti i progetti non commerciali registrati per l'utilizzo di Earth Engine prima del
15 aprile 2025 devono
verificare l'idoneità non commerciale per mantenere l'accesso. Se non hai eseguito la verifica entro il 26 settembre 2025, il tuo accesso potrebbe essere sospeso.
ee.FeatureCollection.flatten
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Appiattisce le raccolte di raccolte.
Utilizzo | Resi |
---|
FeatureCollection.flatten() | FeatureCollection |
Argomento | Tipo | Dettagli |
---|
questo: collection | FeatureCollection | La raccolta di input delle raccolte. |
Esempi
Editor di codice (JavaScript)
// Counties in New Mexico, USA.
var counties = ee.FeatureCollection('TIGER/2018/Counties')
.filter('STATEFP == "35"');
// Monthly climate and climatic water balance surfaces for January 2020.
var climate = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE')
.filterDate('2020-01', '2020-02');
// Calculate mean climate variables for each county per climate surface
// time step. The result is a FeatureCollection of FeatureCollections.
var countiesClimate = climate.map(function(image) {
return image.reduceRegions({
collection: counties,
reducer: ee.Reducer.mean(),
scale: 5000,
crs: 'EPSG:4326'
});
});
// Note that a printed FeatureCollection of FeatureCollections is not
// recursively expanded, you cannot view metadata of the features within the
// nested collections until you isolate a single collection or flatten the
// collections.
print('FeatureCollection of FeatureCollections', countiesClimate);
print('Flattened FeatureCollection of FeatureCollections',
countiesClimate.flatten());
Configurazione di Python
Consulta la pagina
Ambiente Python per informazioni sull'API Python e sull'utilizzo di
geemap
per lo sviluppo interattivo.
import ee
import geemap.core as geemap
Colab (Python)
# Counties in New Mexico, USA.
counties = ee.FeatureCollection('TIGER/2018/Counties').filter('STATEFP == "35"')
# Monthly climate and climatic water balance surfaces for January 2020.
climate = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE').filterDate(
'2020-01', '2020-02')
# Calculate mean climate variables for each county per climate surface
# time step. The result is a FeatureCollection of FeatureCollections.
def reduce_mean(image):
return image.reduceRegions(**{
'collection': counties,
'reducer': ee.Reducer.mean(),
'scale': 5000,
'crs': 'EPSG:4326'
})
counties_climate = climate.map(reduce_mean)
# Note that a printed FeatureCollection of FeatureCollections is not
# recursively expanded, you cannot view metadata of the features within the
# nested collections until you isolate a single collection or flatten the
# collections.
print('FeatureCollection of FeatureCollections:', counties_climate.getInfo())
print('Flattened FeatureCollection of FeatureCollections:',
counties_climate.flatten().getInfo())
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-26 UTC.
[null,null,["Ultimo aggiornamento 2025-07-26 UTC."],[],["The `flatten()` method transforms a nested `FeatureCollection` of `FeatureCollections` into a single, flat `FeatureCollection`. It takes a `FeatureCollection` as input and returns a flattened `FeatureCollection`. This allows for the metadata of features within the nested collections to be viewed, which is not possible with unflattened collections. An example demonstrates calculating mean climate variables for counties per climate surface timestep and then flattening the resulting nested collection.\n"]]