ee.FeatureCollection.kriging

Devuelve los resultados del muestreo de un estimador de Kriging en cada píxel.

UsoMuestra
FeatureCollection.kriging(propertyName, shape, range, sill, nugget, maxDistance, reducer)Imagen
ArgumentoTipoDetalles
esta: collectionFeatureCollectionEs la colección de atributos que se usará como datos de origen para la estimación.
propertyNameStringEs la propiedad que se estimará (debe ser numérica).
shapeStringForma del semivariograma (uno de {exponencial, gaussiano, esférico}).
rangeNúmero de punto flotanteEs el rango del semivariograma, en metros.
sillNúmero de punto flotanteEs el límite del semivariograma.
nuggetNúmero de punto flotanteEs el nugget del semivariograma.
maxDistanceNúmero de punto flotante, valor predeterminado: nuloEs el radio que determina qué atributos se incluyen en el cálculo de cada píxel, en metros. El valor predeterminado es el rango del semivariograma.
reducerReductor, valor predeterminado: nuloEs el reductor que se usa para contraer el valor de "propertyName" de los puntos superpuestos en un solo valor.

Ejemplos

Editor de código (JavaScript)

/**
 * This example generates an interpolated surface using kriging from a
 * FeatureCollection of random points that simulates a table of air temperature
 * at ocean weather buoys.
 */

// Average air temperature at 2m height for June, 2020.
var img = ee.Image('ECMWF/ERA5/MONTHLY/202006')
              .select(['mean_2m_air_temperature'], ['tmean']);

// Region of interest: South Pacific Ocean.
var roi = ee.Geometry.Polygon(
        [[[-156.053, -16.240],
          [-156.053, -44.968],
          [-118.633, -44.968],
          [-118.633, -16.240]]], null, false);

// Sample the mean June 2020 temperature surface at random points in the ROI.
var tmeanFc = img.sample(
  {region: roi, scale: 25000, numPixels: 50, geometries: true}); //250

// Generate an interpolated surface from the points using kriging; parameters
// are set according to interpretation of an unshown semivariogram. See section
// 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.
var tmeanImg = tmeanFc.kriging({
  propertyName: 'tmean',
  shape: 'gaussian',
  range: 2.8e6,
  sill: 164,
  nugget: 0.05,
  maxDistance: 1.8e6,
  reducer: ee.Reducer.mean()
});

// Display the results on the map.
Map.setCenter(-137.47, -30.47, 3);
Map.addLayer(tmeanImg, {min: 279, max: 300}, 'Temperature (K)');

Configuración de Python

Consulta la página Entorno de Python para obtener información sobre la API de Python y el uso de geemap para el desarrollo interactivo.

import ee
import geemap.core as geemap

Colab (Python)

# This example generates an interpolated surface using kriging from a
# FeatureCollection of random points that simulates a table of air temperature
# at ocean weather buoys.

# Average air temperature at 2m height for June, 2020.
img = ee.Image('ECMWF/ERA5/MONTHLY/202006').select(
    ['mean_2m_air_temperature'], ['tmean']
)

# Region of interest: South Pacific Ocean.
roi = ee.Geometry.Polygon(
    [[
        [-156.053, -16.240],
        [-156.053, -44.968],
        [-118.633, -44.968],
        [-118.633, -16.240],
    ]],
    None,
    False,
)

# Sample the mean June 2020 temperature surface at random points in the ROI.
tmean_fc = img.sample(region=roi, scale=25000, numPixels=50, geometries=True)

# Generate an interpolated surface from the points using kriging parameters
# are set according to interpretation of an unshown semivariogram. See section
# 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.
tmean_img = tmean_fc.kriging(
    propertyName='tmean',
    shape='gaussian',
    range=2.8e6,
    sill=164,
    nugget=0.05,
    maxDistance=1.8e6,
    reducer=ee.Reducer.mean(),
)

# Display the results on the map.
m = geemap.Map()
m.set_center(-137.47, -30.47, 3)
m.add_layer(
    tmean_img,
    {'min': 279, 'max': 300, 'min': 279, 'max': 300},
    'Temperature (K)',
)
m