ee.FeatureCollection.randomColumn
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Fügt einer Sammlung eine Spalte mit deterministischen pseudozufälligen Zahlen hinzu. Die Ausgabe besteht aus Gleitkommazahlen mit doppelter Genauigkeit. Bei Verwendung der „gleichmäßigen“ Verteilung (Standardeinstellung) liegen die Ausgabewerte im Bereich [0, 1]. Bei der Verwendung der Normalverteilung haben die Ausgabewerte μ=0, σ=1, aber keine expliziten Grenzen.
Nutzung | Ausgabe |
---|
FeatureCollection.randomColumn(columnName, seed, distribution, rowKeys) | FeatureCollection |
Argument | Typ | Details |
---|
das: collection | FeatureCollection | Die Eingabesammlung, der eine zufällige Spalte hinzugefügt werden soll. |
columnName | String, Standard: „random“ | Der Name der Spalte, die hinzugefügt werden soll. |
seed | Lang, Standard: 0 | Ein Startwert, der beim Generieren der Zufallszahlen verwendet wird. |
distribution | String, Standard: „uniform“ | Der Verteilungstyp der zu generierenden Zufallszahlen. Mögliche Werte sind „uniform“ (gleichmäßig) oder „normal“. |
rowKeys | Liste, optional | Eine Liste von Eigenschaften, die ein Element der Sammlung eindeutig und wiederholbar identifizieren sollten, um die Zufallszahl zu generieren. Standardeinstellung: [system:index] |
Beispiele
Code-Editor (JavaScript)
// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
.filter('country_lg == "Belgium"');
print('N features in collection', fc.size());
// Add a uniform distribution random value column to the FeatureCollection.
fc = fc.randomColumn();
// Randomly split the collection into two sets, 30% and 70% of the total.
var randomSample30 = fc.filter('random < 0.3');
print('N features in 30% sample', randomSample30.size());
var randomSample70 = fc.filter('random >= 0.3');
print('N features in 70% sample', randomSample70.size());
Python einrichten
Auf der Seite
Python-Umgebung finden Sie Informationen zur Python API und zur Verwendung von geemap
für die interaktive Entwicklung.
import ee
import geemap.core as geemap
Colab (Python)
# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
'country_lg == "Belgium"')
print('N features in collection:', fc.size().getInfo())
# Add a uniform distribution random value column to the FeatureCollection.
fc = fc.randomColumn()
# Randomly split the collection into two sets, 30% and 70% of the total.
random_sample_30 = fc.filter('random < 0.3')
print('N features in 30% sample:', random_sample_30.size().getInfo())
random_sample_70 = fc.filter('random >= 0.3')
print('N features in 70% sample:', random_sample_70.size().getInfo())
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-07-25 (UTC).
[null,null,["Zuletzt aktualisiert: 2025-07-25 (UTC)."],[],["This tool adds a column of pseudorandom numbers to a FeatureCollection. Users can specify the `columnName`, `seed`, and `distribution`. The default distribution, 'uniform', generates numbers between 0 and 1; 'normal' produces numbers with a mean of 0 and a standard deviation of 1. The `randomColumn` method returns the modified FeatureCollection. This is exemplified by creating random splits into subsets. The outputs are double-precision floating point numbers.\n"],null,[]]