ee.FeatureCollection.reduceColumns
با مجموعهها، منظم بمانید
ذخیره و طبقهبندی محتوا براساس اولویتهای شما.
با استفاده از انتخابگرهای داده شده برای تعیین ورودی ها، یک کاهش دهنده برای هر عنصر از مجموعه اعمال کنید.
یک فرهنگ لغت از نتایج را که با نام خروجی کلید شده است، برمی گرداند.
| استفاده | برمی گرداند | FeatureCollection. reduceColumns (reducer, selectors, weightSelectors ) | فرهنگ لغت |
| استدلال | تایپ کنید | جزئیات | این: collection | مجموعه ویژگی ها | مجموعه برای جمع آوری بیش از. |
reducer | کاهنده | کاهنده برای اعمال. |
selectors | فهرست کنید | یک انتخابگر برای هر ورودی کاهنده. |
weightSelectors | لیست، پیش فرض: null | یک انتخابگر برای هر ورودی وزنی کاهنده. |
نمونه ها
ویرایشگر کد (جاوا اسکریپت)
// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
.filter('country_lg == "Belgium"');
// Calculate mean of a single FeatureCollection property.
var propMean = fc.reduceColumns({
reducer: ee.Reducer.mean(),
selectors: ['gwh_estimt']
});
print('Mean of a single property', propMean);
// Calculate mean of multiple FeatureCollection properties.
var propsMean = fc.reduceColumns({
reducer: ee.Reducer.mean().repeat(2),
selectors: ['gwh_estimt', 'capacitymw']
});
print('Mean of multiple properties', propsMean);
// Calculate weighted mean of a single FeatureCollection property. Add a fuel
// source weight property to the FeatureCollection.
var fuelWeights = ee.Dictionary({
Wind: 0.9,
Gas: 0.2,
Oil: 0.2,
Coal: 0.1,
Hydro: 0.7,
Biomass: 0.5,
Nuclear: 0.3
});
fc = fc.map(function(feature) {
return feature.set('weight', fuelWeights.getNumber(feature.get('fuel1')));
});
var weightedMean = fc.reduceColumns({
reducer: ee.Reducer.mean(),
selectors: ['gwh_estimt'],
weightSelectors: ['weight']
});
print('Weighted mean of a single property', weightedMean); راه اندازی پایتون
برای اطلاعات در مورد API پایتون و استفاده از geemap برای توسعه تعاملی به صفحه محیط پایتون مراجعه کنید.
import ee
import geemap.core as geemap
کولب (پایتون)
# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
'country_lg == "Belgium"')
# Calculate mean of a single FeatureCollection property.
prop_mean = fc.reduceColumns(**{
'reducer': ee.Reducer.mean(),
'selectors': ['gwh_estimt']
})
print('Mean of a single property:', prop_mean.getInfo())
# Calculate mean of multiple FeatureCollection properties.
props_mean = fc.reduceColumns(**{
'reducer': ee.Reducer.mean().repeat(2),
'selectors': ['gwh_estimt', 'capacitymw']
})
print('Mean of multiple properties:', props_mean.getInfo())
# Calculate weighted mean of a single FeatureCollection property. Add a fuel
# source weight property to the FeatureCollection.
def get_fuel(feature):
return feature.set('weight', fuel_weights.getNumber(feature.get('fuel1')))
fuel_weights = ee.Dictionary({
'Wind': 0.9,
'Gas': 0.2,
'Oil': 0.2,
'Coal': 0.1,
'Hydro': 0.7,
'Biomass': 0.5,
'Nuclear': 0.3
})
fc = fc.map(get_fuel)
weighted_mean = fc.reduceColumns(**{
'reducer': ee.Reducer.mean(),
'selectors': ['gwh_estimt'],
'weightSelectors': ['weight']
})
print('Weighted mean of a single property:', weighted_mean.getInfo())
جز در مواردی که غیر از این ذکر شده باشد،محتوای این صفحه تحت مجوز Creative Commons Attribution 4.0 License است. نمونه کدها نیز دارای مجوز Apache 2.0 License است. برای اطلاع از جزئیات، به خطمشیهای سایت Google Developers مراجعه کنید. جاوا علامت تجاری ثبتشده Oracle و/یا شرکتهای وابسته به آن است.
تاریخ آخرین بهروزرسانی 2025-07-24 بهوقت ساعت هماهنگ جهانی.
[null,null,["تاریخ آخرین بهروزرسانی 2025-07-24 بهوقت ساعت هماهنگ جهانی."],[],["The `reduceColumns` function applies a reducer to a FeatureCollection, generating a dictionary of results. It uses `selectors` to specify input properties and can use `weightSelectors` for weighted inputs. The function takes a `reducer`, and a list of `selectors` and `weightSelectors`. This method can calculate means of single or multiple properties and weighted means by using a reducer and specifying properties to calculate on. The results are returned as a dictionary.\n"]]