ee.FeatureCollection.reduceColumns
با مجموعهها، منظم بمانید
ذخیره و طبقهبندی محتوا براساس اولویتهای شما.
با استفاده از انتخابگرهای داده شده برای تعیین ورودی ها، یک کاهش دهنده برای هر عنصر از مجموعه اعمال کنید.
یک فرهنگ لغت از نتایج را که با نام خروجی کلید شده است، برمی گرداند.
استفاده | برمی گرداند | FeatureCollection. reduceColumns (reducer, selectors, weightSelectors ) | فرهنگ لغت |
استدلال | تایپ کنید | جزئیات | این: collection | مجموعه ویژگی ها | مجموعه برای جمع آوری بیش از. |
reducer | کاهنده | کاهنده برای اعمال. |
selectors | فهرست کنید | یک انتخابگر برای هر ورودی کاهنده. |
weightSelectors | لیست، پیش فرض: null | یک انتخابگر برای هر ورودی وزنی کاهنده. |
نمونه ها
ویرایشگر کد (جاوا اسکریپت)
// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
.filter('country_lg == "Belgium"');
// Calculate mean of a single FeatureCollection property.
var propMean = fc.reduceColumns({
reducer: ee.Reducer.mean(),
selectors: ['gwh_estimt']
});
print('Mean of a single property', propMean);
// Calculate mean of multiple FeatureCollection properties.
var propsMean = fc.reduceColumns({
reducer: ee.Reducer.mean().repeat(2),
selectors: ['gwh_estimt', 'capacitymw']
});
print('Mean of multiple properties', propsMean);
// Calculate weighted mean of a single FeatureCollection property. Add a fuel
// source weight property to the FeatureCollection.
var fuelWeights = ee.Dictionary({
Wind: 0.9,
Gas: 0.2,
Oil: 0.2,
Coal: 0.1,
Hydro: 0.7,
Biomass: 0.5,
Nuclear: 0.3
});
fc = fc.map(function(feature) {
return feature.set('weight', fuelWeights.getNumber(feature.get('fuel1')));
});
var weightedMean = fc.reduceColumns({
reducer: ee.Reducer.mean(),
selectors: ['gwh_estimt'],
weightSelectors: ['weight']
});
print('Weighted mean of a single property', weightedMean);
راه اندازی پایتون
برای اطلاعات در مورد API پایتون و استفاده از geemap
برای توسعه تعاملی به صفحه محیط پایتون مراجعه کنید.
import ee
import geemap.core as geemap
کولب (پایتون)
# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
'country_lg == "Belgium"')
# Calculate mean of a single FeatureCollection property.
prop_mean = fc.reduceColumns(**{
'reducer': ee.Reducer.mean(),
'selectors': ['gwh_estimt']
})
print('Mean of a single property:', prop_mean.getInfo())
# Calculate mean of multiple FeatureCollection properties.
props_mean = fc.reduceColumns(**{
'reducer': ee.Reducer.mean().repeat(2),
'selectors': ['gwh_estimt', 'capacitymw']
})
print('Mean of multiple properties:', props_mean.getInfo())
# Calculate weighted mean of a single FeatureCollection property. Add a fuel
# source weight property to the FeatureCollection.
def get_fuel(feature):
return feature.set('weight', fuel_weights.getNumber(feature.get('fuel1')))
fuel_weights = ee.Dictionary({
'Wind': 0.9,
'Gas': 0.2,
'Oil': 0.2,
'Coal': 0.1,
'Hydro': 0.7,
'Biomass': 0.5,
'Nuclear': 0.3
})
fc = fc.map(get_fuel)
weighted_mean = fc.reduceColumns(**{
'reducer': ee.Reducer.mean(),
'selectors': ['gwh_estimt'],
'weightSelectors': ['weight']
})
print('Weighted mean of a single property:', weighted_mean.getInfo())
جز در مواردی که غیر از این ذکر شده باشد،محتوای این صفحه تحت مجوز Creative Commons Attribution 4.0 License است. نمونه کدها نیز دارای مجوز Apache 2.0 License است. برای اطلاع از جزئیات، به خطمشیهای سایت Google Developers مراجعه کنید. جاوا علامت تجاری ثبتشده Oracle و/یا شرکتهای وابسته به آن است.
تاریخ آخرین بهروزرسانی 2025-07-24 بهوقت ساعت هماهنگ جهانی.
[null,null,["تاریخ آخرین بهروزرسانی 2025-07-24 بهوقت ساعت هماهنگ جهانی."],[[["\u003cp\u003e\u003ccode\u003ereduceColumns\u003c/code\u003e applies a reducer function to properties (columns) of a FeatureCollection, effectively aggregating data across all features.\u003c/p\u003e\n"],["\u003cp\u003eIt takes a reducer, a list of selectors specifying the properties to use as input, and optionally, weight selectors for weighted reductions.\u003c/p\u003e\n"],["\u003cp\u003eThe output is a dictionary containing the results, keyed by the names defined within the reducer.\u003c/p\u003e\n"],["\u003cp\u003eThis function allows for calculating statistics such as mean, sum, or other custom aggregations across the features in a FeatureCollection, using specified properties and optional weights.\u003c/p\u003e\n"],["\u003cp\u003eExamples provided demonstrate calculating mean and weighted mean of properties within a FeatureCollection of power plants.\u003c/p\u003e\n"]]],["The `reduceColumns` function applies a reducer to a FeatureCollection, generating a dictionary of results. It uses `selectors` to specify input properties and can use `weightSelectors` for weighted inputs. The function takes a `reducer`, and a list of `selectors` and `weightSelectors`. This method can calculate means of single or multiple properties and weighted means by using a reducer and specifying properties to calculate on. The results are returned as a dictionary.\n"],null,["# ee.FeatureCollection.reduceColumns\n\nApply a reducer to each element of a collection, using the given selectors to determine the inputs.\n\n\u003cbr /\u003e\n\nReturns a dictionary of results, keyed with the output names.\n\n| Usage | Returns |\n|----------------------------------------------------------------------------|------------|\n| FeatureCollection.reduceColumns`(reducer, selectors, `*weightSelectors*`)` | Dictionary |\n\n| Argument | Type | Details |\n|--------------------|---------------------|----------------------------------------------------|\n| this: `collection` | FeatureCollection | The collection to aggregate over. |\n| `reducer` | Reducer | The reducer to apply. |\n| `selectors` | List | A selector for each input of the reducer. |\n| `weightSelectors` | List, default: null | A selector for each weighted input of the reducer. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// FeatureCollection of power plants in Belgium.\nvar fc = ee.FeatureCollection('WRI/GPPD/power_plants')\n .filter('country_lg == \"Belgium\"');\n\n// Calculate mean of a single FeatureCollection property.\nvar propMean = fc.reduceColumns({\n reducer: ee.Reducer.mean(),\n selectors: ['gwh_estimt']\n});\nprint('Mean of a single property', propMean);\n\n// Calculate mean of multiple FeatureCollection properties.\nvar propsMean = fc.reduceColumns({\n reducer: ee.Reducer.mean().repeat(2),\n selectors: ['gwh_estimt', 'capacitymw']\n});\nprint('Mean of multiple properties', propsMean);\n\n// Calculate weighted mean of a single FeatureCollection property. Add a fuel\n// source weight property to the FeatureCollection.\nvar fuelWeights = ee.Dictionary({\n Wind: 0.9,\n Gas: 0.2,\n Oil: 0.2,\n Coal: 0.1,\n Hydro: 0.7,\n Biomass: 0.5,\n Nuclear: 0.3\n});\nfc = fc.map(function(feature) {\n return feature.set('weight', fuelWeights.getNumber(feature.get('fuel1')));\n});\n\nvar weightedMean = fc.reduceColumns({\n reducer: ee.Reducer.mean(),\n selectors: ['gwh_estimt'],\n weightSelectors: ['weight']\n});\nprint('Weighted mean of a single property', weightedMean);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# FeatureCollection of power plants in Belgium.\nfc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(\n 'country_lg == \"Belgium\"')\n\n# Calculate mean of a single FeatureCollection property.\nprop_mean = fc.reduceColumns(**{\n 'reducer': ee.Reducer.mean(),\n 'selectors': ['gwh_estimt']\n })\nprint('Mean of a single property:', prop_mean.getInfo())\n\n# Calculate mean of multiple FeatureCollection properties.\nprops_mean = fc.reduceColumns(**{\n 'reducer': ee.Reducer.mean().repeat(2),\n 'selectors': ['gwh_estimt', 'capacitymw']\n })\nprint('Mean of multiple properties:', props_mean.getInfo())\n\n\n# Calculate weighted mean of a single FeatureCollection property. Add a fuel\n# source weight property to the FeatureCollection.\ndef get_fuel(feature):\n return feature.set('weight', fuel_weights.getNumber(feature.get('fuel1')))\n\nfuel_weights = ee.Dictionary({\n 'Wind': 0.9,\n 'Gas': 0.2,\n 'Oil': 0.2,\n 'Coal': 0.1,\n 'Hydro': 0.7,\n 'Biomass': 0.5,\n 'Nuclear': 0.3\n })\n\nfc = fc.map(get_fuel)\n\nweighted_mean = fc.reduceColumns(**{\n 'reducer': ee.Reducer.mean(),\n 'selectors': ['gwh_estimt'],\n 'weightSelectors': ['weight']\n })\nprint('Weighted mean of a single property:', weighted_mean.getInfo())\n```"]]