ee.Image.distance
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Berechnet die Entfernung zum nächsten Pixel ungleich null in jedem Band mithilfe des angegebenen Distanz-Kernels.
Nutzung | Ausgabe |
---|
Image.distance(kernel, skipMasked) | Bild |
Argument | Typ | Details |
---|
So gehts: image | Bild | Das Eingabebild. |
kernel | Kernel, Standardwert: null | Der Distanz-Kernel. Einer der folgenden Werte: „chebyshev“, „euclidean“ oder „manhattan“. |
skipMasked | Boolescher Wert, Standard: „true“ | Maskiert Ausgabepixel, wenn das entsprechende Eingabepixel maskiert ist. |
Beispiele
Code-Editor (JavaScript)
// The objective is to determine the per-pixel distance to a target
// feature (pixel value). In this example, the target feature is water in a
// land cover map.
// Import a Dynamic World land cover image and subset the 'label' band.
var lcImg = ee.Image(
'GOOGLE/DYNAMICWORLD/V1/20210726T171859_20210726T172345_T14TQS')
.select('label');
// Create a binary image where the target feature is value 1, all else 0.
// In the Dynamic World map, water is represented as value 0, so we use the
// ee.Image.eq() relational operator to set it to 1.
var targetImg = lcImg.eq(0);
// Set a max distance from target pixels to consider in the analysis. Pixels
// with distance greater than this value from target pixels will be masked out.
// Here, we are using units of meters, but the distance kernels also accept
// units of pixels.
var maxDistM = 10000; // 10 km
// Calculate distance to target pixels. Several distance kernels are provided.
// Euclidean distance.
var euclideanKernel = ee.Kernel.euclidean(maxDistM, 'meters');
var euclideanDist = targetImg.distance(euclideanKernel);
var vis = {min: 0, max: maxDistM};
Map.setCenter(-95.68, 46.46, 9);
Map.addLayer(euclideanDist, vis, 'Euclidean distance to target pixels');
// Manhattan distance.
var manhattanKernel = ee.Kernel.manhattan(maxDistM, 'meters');
var manhattanDist = targetImg.distance(manhattanKernel);
Map.addLayer(manhattanDist, vis, 'Manhattan distance to target pixels', false);
// Chebyshev distance.
var chebyshevKernel = ee.Kernel.chebyshev(maxDistM, 'meters');
var chebyshevDist = targetImg.distance(chebyshevKernel);
Map.addLayer(chebyshevDist, vis, 'Chebyshev distance to target pixels', false);
// Add the target layer to the map; water is blue, all else masked out.
Map.addLayer(targetImg.mask(targetImg), {palette: 'blue'}, 'Target pixels');
Python einrichten
Informationen zur Python API und zur Verwendung von geemap
für die interaktive Entwicklung finden Sie auf der Seite
Python-Umgebung.
import ee
import geemap.core as geemap
Colab (Python)
# The objective is to determine the per-pixel distance to a target
# feature (pixel value). In this example, the target feature is water in a
# land cover map.
# Import a Dynamic World land cover image and subset the 'label' band.
lc_img = ee.Image(
'GOOGLE/DYNAMICWORLD/V1/20210726T171859_20210726T172345_T14TQS'
).select('label')
# Create a binary image where the target feature is value 1, all else 0.
# In the Dynamic World map, water is represented as value 0, so we use the
# ee.Image.eq() relational operator to set it to 1.
target_img = lc_img.eq(0)
# Set a max distance from target pixels to consider in the analysis. Pixels
# with distance greater than this value from target pixels will be masked out.
# Here, we are using units of meters, but the distance kernels also accept
# units of pixels.
max_dist_m = 10000 # 10 km
# Calculate distance to target pixels. Several distance kernels are provided.
# Euclidean distance.
euclidean_kernel = ee.Kernel.euclidean(max_dist_m, 'meters')
euclidean_dist = target_img.distance(euclidean_kernel)
vis = {'min': 0, 'max': max_dist_m}
m = geemap.Map()
m.set_center(-95.68, 46.46, 9)
m.add_layer(euclidean_dist, vis, 'Euclidean distance to target pixels')
# Manhattan distance.
manhattan_kernel = ee.Kernel.manhattan(max_dist_m, 'meters')
manhattan_dist = target_img.distance(manhattan_kernel)
m.add_layer(
manhattan_dist, vis, 'Manhattan distance to target pixels', False
)
# Chebyshev distance.
chebyshev_kernel = ee.Kernel.chebyshev(max_dist_m, 'meters')
chebyshev_dist = target_img.distance(chebyshev_kernel)
m.add_layer(
chebyshev_dist, vis, 'Chebyshev distance to target pixels', False
)
# Add the target layer to the map water is blue, all else masked out.
m.add_layer(
target_img.mask(target_img), {'palette': 'blue'}, 'Target pixels'
)
m
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-07-26 (UTC).
[null,null,["Zuletzt aktualisiert: 2025-07-26 (UTC)."],[],[],null,[]]