إشعار: يجب
إثبات أهلية جميع المشاريع غير التجارية المسجّلة لاستخدام Earth Engine قبل
15 أبريل 2025 من أجل الحفاظ على إمكانية الوصول إلى Earth Engine.
ee.Image.reduceRegion
تنظيم صفحاتك في مجموعات
يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.
تطبيق أداة تقليل على جميع وحدات البكسل في منطقة معيّنة
يجب أن يحتوي المخفّض على عدد المدخلات نفسه الذي تحتويه صورة الإدخال من النطاقات، أو يجب أن يحتوي على إدخال واحد وسيتم تكراره لكل نطاق.
تعرض هذه السمة قاموسًا لنتائج أداة الاختزال.
الاستخدام | المرتجعات |
---|
Image.reduceRegion(reducer, geometry, scale, crs, crsTransform, bestEffort, maxPixels, tileScale) | القاموس |
الوسيطة | النوع | التفاصيل |
---|
هذا: image | صورة | الصورة المطلوب تصغيرها |
reducer | Reducer | الدالة المخفِّضة التي سيتم تطبيقها. |
geometry | Geometry, default: null | المنطقة التي سيتم فيها تقليل البيانات يتم ضبط القيمة التلقائية على المساحة التي تغطيها الحزمة الأولى من الصورة. |
scale | العدد العائم، القيمة التلقائية: null | مقياس اسمي بالمتر للإسقاط الذي سيتم العمل فيه |
crs | التوقّع، القيمة التلقائية: null | تمثّل هذه السمة نظام الإحداثيات الذي سيتم استخدامه. في حال عدم تحديدها، يتم استخدام إسقاط النطاق الأول للصورة. إذا تم تحديدها بالإضافة إلى المقياس، سيتم إعادة قياسها وفقًا للمقياس المحدّد. |
crsTransform | قائمة، القيمة التلقائية: فارغة | قائمة بقيم تحويل نظام الإحداثيات المرجعية (CRS). هذا ترتيب رئيسي للصف لمصفوفة التحويل 3x2. هذا الخيار غير متوافق مع الخيار "المقياس"، ويحلّ محلّ أي عملية تحويل تم ضبطها مسبقًا على العرض. |
bestEffort | قيمة منطقية، القيمة التلقائية: false | إذا كان المضلّع سيحتوي على عدد كبير جدًا من وحدات البكسل بالمقياس المحدّد، احسب واستخدِم مقياسًا أكبر يسمح بنجاح العملية. |
maxPixels | Long، القيمة التلقائية: 10000000 | الحد الأقصى لعدد وحدات البكسل التي يمكن تقليلها |
tileScale | عدد عائم، القيمة التلقائية: 1 | عامل قياس بين 0.1 و16 يُستخدَم لضبط حجم مربّع التجميع. يؤدي ضبط قيمة أكبر لـ tileScale (مثل 2 أو 4) تستخدم مربّعات أصغر حجمًا وقد تتيح إجراء عمليات حسابية لا يمكن إجراؤها باستخدام الإعداد التلقائي بسبب نفاد الذاكرة. |
أمثلة
محرّر الرموز البرمجية (JavaScript)
// A Landsat 8 surface reflectance image with SWIR1, NIR, and green bands.
var img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')
.select(['SR_B6', 'SR_B5', 'SR_B3']);
// Santa Cruz Mountains ecoregion geometry.
var geom = ee.FeatureCollection('EPA/Ecoregions/2013/L4')
.filter('us_l4name == "Santa Cruz Mountains"').geometry();
// Display layers on the map.
Map.setCenter(-122.08, 37.22, 9);
Map.addLayer(img, {min: 10000, max: 20000}, 'Landsat image');
Map.addLayer(geom, {color: 'white'}, 'Santa Cruz Mountains ecoregion');
// Calculate median band values within Santa Cruz Mountains ecoregion. It is
// good practice to explicitly define "scale" (or "crsTransform") and "crs"
// parameters of the analysis to avoid unexpected results from undesired
// defaults when e.g. reducing a composite image.
var stats = img.reduceRegion({
reducer: ee.Reducer.median(),
geometry: geom,
scale: 30, // meters
crs: 'EPSG:3310', // California Albers projection
});
// A dictionary is returned; keys are band names, values are the statistic.
print('Median band values, Santa Cruz Mountains ecoregion', stats);
// You can combine reducers to calculate e.g. mean and standard deviation
// simultaneously. The output dictionary keys are the concatenation of the band
// names and statistic names, separated by an underscore.
var reducer = ee.Reducer.mean().combine({
reducer2: ee.Reducer.stdDev(),
sharedInputs: true
});
var multiStats = img.reduceRegion({
reducer: reducer,
geometry: geom,
scale: 30,
crs: 'EPSG:3310',
});
print('Mean & SD band values, Santa Cruz Mountains ecoregion', multiStats);
إعداد Python
راجِع صفحة
بيئة Python للحصول على معلومات حول واجهة برمجة التطبيقات Python واستخدام
geemap
للتطوير التفاعلي.
import ee
import geemap.core as geemap
Colab (Python)
# A Landsat 8 surface reflectance image with SWIR1, NIR, and green bands.
img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508').select(
['SR_B6', 'SR_B5', 'SR_B3']
)
# Santa Cruz Mountains ecoregion geometry.
geom = (
ee.FeatureCollection('EPA/Ecoregions/2013/L4')
.filter('us_l4name == "Santa Cruz Mountains"')
.geometry()
)
# Display layers on the map.
m = geemap.Map()
m.set_center(-122.08, 37.22, 9)
m.add_layer(img, {'min': 10000, 'max': 20000}, 'Landsat image')
m.add_layer(geom, {'color': 'white'}, 'Santa Cruz Mountains ecoregion')
display(m)
# Calculate median band values within Santa Cruz Mountains ecoregion. It is
# good practice to explicitly define "scale" (or "crsTransform") and "crs"
# parameters of the analysis to avoid unexpected results from undesired
# defaults when e.g. reducing a composite image.
stats = img.reduceRegion(
reducer=ee.Reducer.median(),
geometry=geom,
scale=30, # meters
crs='EPSG:3310', # California Albers projection
)
# A dictionary is returned keys are band names, values are the statistic.
display('Median band values, Santa Cruz Mountains ecoregion', stats)
# You can combine reducers to calculate e.g. mean and standard deviation
# simultaneously. The output dictionary keys are the concatenation of the band
# names and statistic names, separated by an underscore.
reducer = ee.Reducer.mean().combine(
reducer2=ee.Reducer.stdDev(), sharedInputs=True
)
multi_stats = img.reduceRegion(
reducer=reducer,
geometry=geom,
scale=30,
crs='EPSG:3310',
)
display('Mean & SD band values, Santa Cruz Mountains ecoregion', multi_stats)
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)"],[[["\u003cp\u003e\u003ccode\u003eImage.reduceRegion()\u003c/code\u003e applies a reducer function to all pixels within a specified region of an image.\u003c/p\u003e\n"],["\u003cp\u003eThe reducer can either accept the same number of inputs as the image bands or a single input to be applied to each band.\u003c/p\u003e\n"],["\u003cp\u003eIt returns a dictionary containing the reducer's output, with keys representing band names and values corresponding to the calculated statistic.\u003c/p\u003e\n"],["\u003cp\u003eUsers can define parameters like scale, projection, and geometry to control the region and resolution of the reduction operation.\u003c/p\u003e\n"],["\u003cp\u003eMultiple reducers can be combined to calculate multiple statistics simultaneously, with output dictionary keys reflecting both band and statistic names.\u003c/p\u003e\n"]]],[],null,["# ee.Image.reduceRegion\n\nApply a reducer to all the pixels in a specific region.\n\n\u003cbr /\u003e\n\nEither the reducer must have the same number of inputs as the input image has bands, or it must have a single input and will be repeated for each band.\n\nReturns a dictionary of the reducer's outputs.\n\n| Usage | Returns |\n|---------------------------------------------------------------------------------------------------------------------------------------|------------|\n| Image.reduceRegion`(reducer, `*geometry* `, `*scale* `, `*crs* `, `*crsTransform* `, `*bestEffort* `, `*maxPixels* `, `*tileScale*`)` | Dictionary |\n\n| Argument | Type | Details |\n|----------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `image` | Image | The image to reduce. |\n| `reducer` | Reducer | The reducer to apply. |\n| `geometry` | Geometry, default: null | The region over which to reduce data. Defaults to the footprint of the image's first band. |\n| `scale` | Float, default: null | A nominal scale in meters of the projection to work in. |\n| `crs` | Projection, default: null | The projection to work in. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. |\n| `crsTransform` | List, default: null | The list of CRS transform values. This is a row-major ordering of the 3x2 transform matrix. This option is mutually exclusive with 'scale', and replaces any transform already set on the projection. |\n| `bestEffort` | Boolean, default: false | If the polygon would contain too many pixels at the given scale, compute and use a larger scale which would allow the operation to succeed. |\n| `maxPixels` | Long, default: 10000000 | The maximum number of pixels to reduce. |\n| `tileScale` | Float, default: 1 | A scaling factor between 0.1 and 16 used to adjust aggregation tile size; setting a larger tileScale (e.g., 2 or 4) uses smaller tiles and may enable computations that run out of memory with the default. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A Landsat 8 surface reflectance image with SWIR1, NIR, and green bands.\nvar img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')\n .select(['SR_B6', 'SR_B5', 'SR_B3']);\n\n// Santa Cruz Mountains ecoregion geometry.\nvar geom = ee.FeatureCollection('EPA/Ecoregions/2013/L4')\n .filter('us_l4name == \"Santa Cruz Mountains\"').geometry();\n\n// Display layers on the map.\nMap.setCenter(-122.08, 37.22, 9);\nMap.addLayer(img, {min: 10000, max: 20000}, 'Landsat image');\nMap.addLayer(geom, {color: 'white'}, 'Santa Cruz Mountains ecoregion');\n\n// Calculate median band values within Santa Cruz Mountains ecoregion. It is\n// good practice to explicitly define \"scale\" (or \"crsTransform\") and \"crs\"\n// parameters of the analysis to avoid unexpected results from undesired\n// defaults when e.g. reducing a composite image.\nvar stats = img.reduceRegion({\n reducer: ee.Reducer.median(),\n geometry: geom,\n scale: 30, // meters\n crs: 'EPSG:3310', // California Albers projection\n});\n\n// A dictionary is returned; keys are band names, values are the statistic.\nprint('Median band values, Santa Cruz Mountains ecoregion', stats);\n\n// You can combine reducers to calculate e.g. mean and standard deviation\n// simultaneously. The output dictionary keys are the concatenation of the band\n// names and statistic names, separated by an underscore.\nvar reducer = ee.Reducer.mean().combine({\n reducer2: ee.Reducer.stdDev(),\n sharedInputs: true\n});\nvar multiStats = img.reduceRegion({\n reducer: reducer,\n geometry: geom,\n scale: 30,\n crs: 'EPSG:3310',\n});\nprint('Mean & SD band values, Santa Cruz Mountains ecoregion', multiStats);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# A Landsat 8 surface reflectance image with SWIR1, NIR, and green bands.\nimg = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508').select(\n ['SR_B6', 'SR_B5', 'SR_B3']\n)\n\n# Santa Cruz Mountains ecoregion geometry.\ngeom = (\n ee.FeatureCollection('EPA/Ecoregions/2013/L4')\n .filter('us_l4name == \"Santa Cruz Mountains\"')\n .geometry()\n)\n\n# Display layers on the map.\nm = geemap.Map()\nm.set_center(-122.08, 37.22, 9)\nm.add_layer(img, {'min': 10000, 'max': 20000}, 'Landsat image')\nm.add_layer(geom, {'color': 'white'}, 'Santa Cruz Mountains ecoregion')\ndisplay(m)\n\n# Calculate median band values within Santa Cruz Mountains ecoregion. It is\n# good practice to explicitly define \"scale\" (or \"crsTransform\") and \"crs\"\n# parameters of the analysis to avoid unexpected results from undesired\n# defaults when e.g. reducing a composite image.\nstats = img.reduceRegion(\n reducer=ee.Reducer.median(),\n geometry=geom,\n scale=30, # meters\n crs='EPSG:3310', # California Albers projection\n)\n\n# A dictionary is returned keys are band names, values are the statistic.\ndisplay('Median band values, Santa Cruz Mountains ecoregion', stats)\n\n# You can combine reducers to calculate e.g. mean and standard deviation\n# simultaneously. The output dictionary keys are the concatenation of the band\n# names and statistic names, separated by an underscore.\nreducer = ee.Reducer.mean().combine(\n reducer2=ee.Reducer.stdDev(), sharedInputs=True\n)\nmulti_stats = img.reduceRegion(\n reducer=reducer,\n geometry=geom,\n scale=30,\n crs='EPSG:3310',\n)\ndisplay('Mean & SD band values, Santa Cruz Mountains ecoregion', multi_stats)\n```"]]