ee.Image.reduceRegions

Terapkan pengurangan pada area setiap fitur dalam koleksi yang diberikan.

Pengurang harus memiliki jumlah input yang sama dengan band gambar input.

Menampilkan fitur input, yang masing-masing dilengkapi dengan output reducer yang sesuai.

PenggunaanHasil
Image.reduceRegions(collection, reducer, scale, crs, crsTransform, tileScale, maxPixelsPerRegion)FeatureCollection
ArgumenJenisDetail
ini: imageGambarGambar yang akan dikurangi.
collectionFeatureCollectionFitur yang akan dikurangi.
reducerPengurangPengurang yang akan diterapkan.
scaleFloat, default: nullSkala nominal dalam meter dari proyeksi yang akan digunakan.
crsProyeksi, default: nullProyeksi yang akan digunakan. Jika tidak ditentukan, proyeksi band pertama gambar akan digunakan. Jika ditentukan selain skala, skala akan diubah ke skala yang ditentukan.
crsTransformDaftar, default: nullDaftar nilai transformasi CRS. Ini adalah pengurutan baris utama dari matriks transformasi 3x2. Opsi ini saling eksklusif dengan 'scale', dan akan mengganti transformasi apa pun yang telah ditetapkan pada proyeksi.
tileScaleFloat, default: 1Faktor penskalaan yang digunakan untuk mengurangi ukuran ubin agregasi; menggunakan tileScale yang lebih besar (misalnya, 2 atau 4) dapat mengaktifkan komputasi yang kehabisan memori dengan setelan default.
maxPixelsPerRegionPanjang, default: nullJumlah maksimum piksel yang akan dikurangi per region.

Contoh

Editor Kode (JavaScript)

// A Landsat 8 SR image with SWIR1, NIR, and green bands.
var img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')
              .select(['SR_B6', 'SR_B5', 'SR_B3']);

// Santa Cruz Mountains ecoregions feature collection.
var regionCol = ee.FeatureCollection('EPA/Ecoregions/2013/L4')
                    .filter('us_l4name == "Santa Cruz Mountains" || ' +
                            'us_l4name == "San Mateo Coastal Hills" || ' +
                            'us_l4name == "Leeward Hills"');

// Display layers on the map.
Map.setCenter(-122.08, 37.22, 9);
Map.addLayer(img, {min: 10000, max: 20000}, 'Landsat image');
Map.addLayer(regionCol, {color: 'white'}, 'Santa Cruz Mountains ecoregions');

// Calculate median band values within Santa Cruz Mountains ecoregions. It is
// good practice to explicitly define "scale" (or "crsTransform") and "crs"
// parameters of the analysis to avoid unexpected results from undesired
// defaults when e.g. reducing a composite image.
var stats = img.reduceRegions({
  collection: regionCol,
  reducer: ee.Reducer.median(),
  scale: 30,  // meters
  crs: 'EPSG:3310',  // California Albers projection
});

// The input feature collection is returned with new properties appended.
// The new properties are the outcome of the region reduction per image band,
// for each feature in the collection. Region reduction property names
// are the same as the input image band names.
print('Median band values, Santa Cruz Mountains ecoregions', stats);

// You can combine reducers to calculate e.g. mean and standard deviation
// simultaneously. The resulting property names are the concatenation of the
// band names and statistic names, separated by an underscore.
var reducer = ee.Reducer.mean().combine({
  reducer2: ee.Reducer.stdDev(),
  sharedInputs: true
});
var multiStats = img.reduceRegions({
  collection: regionCol,
  reducer: reducer,
  scale: 30,
  crs: 'EPSG:3310',
});
print('Mean & SD band values, Santa Cruz Mountains ecoregions', multiStats);

Penyiapan Python

Lihat halaman Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan geemap untuk pengembangan interaktif.

import ee
import geemap.core as geemap

Colab (Python)

# A Landsat 8 SR image with SWIR1, NIR, and green bands.
img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508').select(
    ['SR_B6', 'SR_B5', 'SR_B3']
)

# Santa Cruz Mountains ecoregions feature collection.
region_col = ee.FeatureCollection('EPA/Ecoregions/2013/L4').filter(
    'us_l4name == "Santa Cruz Mountains" || '
    + 'us_l4name == "San Mateo Coastal Hills" || '
    + 'us_l4name == "Leeward Hills"'
)

# Display layers on the map.
m = geemap.Map()
m.set_center(-122.08, 37.22, 9)
m.add_layer(img, {'min': 10000, 'max': 20000}, 'Landsat image')
m.add_layer(
    region_col, {'color': 'white'}, 'Santa Cruz Mountains ecoregions'
)
display(m)

# Calculate median band values within Santa Cruz Mountains ecoregions. It is
# good practice to explicitly define "scale" (or "crsTransform") and "crs"
# parameters of the analysis to avoid unexpected results from undesired
# defaults when e.g. reducing a composite image.
stats = img.reduceRegions(
    collection=region_col,
    reducer=ee.Reducer.median(),
    scale=30,  # meters
    crs='EPSG:3310',  # California Albers projection
)

# The input feature collection is returned with new properties appended.
# The new properties are the outcome of the region reduction per image band,
# for each feature in the collection. Region reduction property names
# are the same as the input image band names.
display('Median band values, Santa Cruz Mountains ecoregions', stats)

# You can combine reducers to calculate e.g. mean and standard deviation
# simultaneously. The resulting property names are the concatenation of the
# band names and statistic names, separated by an underscore.
reducer = ee.Reducer.mean().combine(
    reducer2=ee.Reducer.stdDev(), sharedInputs=True
)
multi_stats = img.reduceRegions(
    collection=region_col,
    reducer=reducer,
    scale=30,
    crs='EPSG:3310',
)
display('Mean & SD band values, Santa Cruz Mountains ecoregions', multi_stats)