إشعار: يجب
إثبات أهلية جميع المشاريع غير التجارية المسجّلة لاستخدام Earth Engine قبل
15 أبريل 2025 من أجل الحفاظ على إمكانية الوصول إلى Earth Engine.
ee.Image.sample
تنظيم صفحاتك في مجموعات
يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.
تعرض هذه الدالة عيّنات من وحدات البكسل في صورة، وتعيدها كـ FeatureCollection. سيتضمّن كل عنصر موقعًا واحدًا لكل نطاق في الصورة المُدخَلة. يُرجى العِلم أنّ السلوك التلقائي هو حذف العناصر التي تتقاطع مع وحدات البكسل المخفية، ما يؤدي إلى خصائص ذات قيم فارغة (راجِع وسيط dropNulls).
الاستخدام | المرتجعات |
---|
Image.sample(region, scale, projection, factor, numPixels, seed, dropNulls, tileScale, geometries) | FeatureCollection |
الوسيطة | النوع | التفاصيل |
---|
هذا: image | صورة | الصورة المطلوب أخذ عيّنة منها |
region | Geometry, default: null | المنطقة التي سيتم أخذ عيّنات منها في حال عدم تحديدها، يتم استخدام مساحة الصورة بالكامل. |
scale | العدد العائم، القيمة التلقائية: null | مقياس اسمي بالأمتار للإسقاط الذي سيتم أخذ عينات منه |
projection | التوقّع، القيمة التلقائية: null | نظام الإسقاط الذي سيتم أخذ العيّنة فيه. في حال عدم تحديدها، يتم استخدام إسقاط النطاق الأول للصورة. إذا تم تحديدها بالإضافة إلى المقياس، سيتم إعادة قياسها وفقًا للمقياس المحدّد. |
factor | العدد العائم، القيمة التلقائية: null | عامل جمع عيّنات جزئية، ضمن (0, 1]. في حال تحديدها، يجب عدم تحديد "numPixels". القيمة التلقائية هي عدم أخذ عينات فرعية. |
numPixels | Long، القيمة التلقائية: null | العدد التقريبي لوحدات البكسل التي سيتم أخذ عيّنات منها في حال تحديد هذه السمة، يجب عدم تحديد السمة "العامل". |
seed | عدد صحيح، القيمة التلقائية: 0 | قيمة أساسية عشوائية تُستخدَم لأخذ عينات فرعية. |
dropNulls | قيمة منطقية، القيمة التلقائية: true | فلترة النتيجة بعد المعالجة لإزالة العناصر التي تتضمّن سمات ذات قيم فارغة |
tileScale | عدد عائم، القيمة التلقائية: 1 | عامل قياس يُستخدَم لتقليل حجم مربّع التجميع، ويؤدي استخدام قيمة أكبر لـ tileScale (مثل 2 أو 4) قد تتيح إجراء عمليات حسابية تنفد فيها الذاكرة مع القيمة التلقائية. |
geometries | قيمة منطقية، القيمة التلقائية: false | في حال ضبط القيمة على "صحيح"، تتم إضافة مركز البكسل الذي تم أخذ عينات منه كسمة هندسية للعنصر الناتج. وإلا سيتم حذف الأشكال الهندسية (لتوفير مساحة في الذاكرة). |
أمثلة
محرّر الرموز البرمجية (JavaScript)
// Demonstrate extracting pixels from an image as features with
// ee.Image.sample(), and show how the features are aligned with the pixels.
// An image with one band of elevation data.
var image = ee.Image('CGIAR/SRTM90_V4');
var VIS_MIN = 1620;
var VIS_MAX = 1650;
Map.addLayer(image, {min: VIS_MIN, max: VIS_MAX}, 'SRTM');
// Region to sample.
var region = ee.Geometry.Polygon(
[[[-110.006, 40.002],
[-110.006, 39.999],
[-109.995, 39.999],
[-109.995, 40.002]]], null, false);
// Show region on the map.
Map.setCenter(-110, 40, 16);
Map.addLayer(ee.FeatureCollection([region]).style({"color": "00FF0022"}));
// Perform sampling; convert image pixels to features.
var samples = image.sample({
region: region,
// Default (false) is no geometries in the output.
// When set to true, each feature has a Point geometry at the center of the
// image pixel.
geometries: true,
// The scale is not specified, so the resolution of the image will be used,
// and there is a feature for every pixel. If we give a scale parameter, the
// image will be resampled and there will be more or fewer features.
//
// scale: 200,
});
// Visualize sample data using ee.FeatureCollection.style().
var styled = samples
.map(function (feature) {
return feature.set('style', {
pointSize: feature.getNumber('elevation').unitScale(VIS_MIN, VIS_MAX)
.multiply(15),
});
})
.style({
color: '000000FF',
fillColor: '00000000',
styleProperty: 'style',
neighborhood: 6, // increase to correctly draw large points
});
Map.addLayer(styled);
// Each sample feature has a point geometry and a property named 'elevation'
// corresponding to the band named 'elevation' of the image. If there are
// multiple bands they will become multiple properties. This will print:
//
// geometry: Point (-110.01, 40.00)
// properties:
// elevation: 1639
print(samples.first());
إعداد Python
راجِع صفحة
بيئة Python للحصول على معلومات حول واجهة برمجة التطبيقات Python واستخدام
geemap
للتطوير التفاعلي.
import ee
import geemap.core as geemap
Colab (Python)
# Demonstrate extracting pixels from an image as features with
# ee.Image.sample(), and show how the features are aligned with the pixels.
# An image with one band of elevation data.
image = ee.Image('CGIAR/SRTM90_V4')
vis_min = 1620
vis_max = 1650
m = geemap.Map()
m.add_layer(image, {'min': vis_min, 'max': vis_max}, 'SRTM')
# Region to sample.
region = ee.Geometry.Polygon(
[[
[-110.006, 40.002],
[-110.006, 39.999],
[-109.995, 39.999],
[-109.995, 40.002],
]],
None,
False,
)
# Show region on the map.
m.set_center(-110, 40, 16)
m.add_layer(ee.FeatureCollection([region]).style(color='00FF0022'))
# Perform sampling convert image pixels to features.
samples = image.sample(
region=region,
# Default (False) is no geometries in the output.
# When set to True, each feature has a Point geometry at the center of the
# image pixel.
geometries=True,
# The scale is not specified, so the resolution of the image will be used,
# and there is a feature for every pixel. If we give a scale parameter, the
# image will be resampled and there will be more or fewer features.
#
# scale=200,
)
def scale_point_size(feature):
elevation = feature.getNumber('elevation')
point_size = elevation.unitScale(vis_min, vis_max).multiply(15)
feature.set('style', {'pointSize': point_size})
return feature
# Visualize sample data using ee.FeatureCollection.style().
styled = samples.map(scale_point_size).style(
color='000000FF',
fillColor='00000000',
styleProperty='style',
neighborhood=6, # increase to correctly draw large points
)
m.add_layer(styled)
display(m)
# Each sample feature has a point geometry and a property named 'elevation'
# corresponding to the band named 'elevation' of the image. If there are
# multiple bands they will become multiple properties. This will print:
#
# geometry: Point (-110.01, 40.00)
# properties:
# elevation: 1639
display(samples.first())
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)"],[[["\u003cp\u003e\u003ccode\u003eImage.sample()\u003c/code\u003e extracts pixel values from an image and converts them into a FeatureCollection, with each feature representing a pixel and its properties corresponding to the band values.\u003c/p\u003e\n"],["\u003cp\u003eYou can define a region of interest, control the sampling scale and projection, and adjust the number of sampled pixels using arguments like \u003ccode\u003eregion\u003c/code\u003e, \u003ccode\u003escale\u003c/code\u003e, \u003ccode\u003eprojection\u003c/code\u003e, \u003ccode\u003efactor\u003c/code\u003e, and \u003ccode\u003enumPixels\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eSampled features can optionally include point geometries representing pixel centers using the \u003ccode\u003egeometries\u003c/code\u003e argument.\u003c/p\u003e\n"],["\u003cp\u003eBy default, features associated with masked pixels (resulting in null-valued properties) are excluded, which can be controlled using the \u003ccode\u003edropNulls\u003c/code\u003e argument.\u003c/p\u003e\n"]]],[],null,["# ee.Image.sample\n\nSamples the pixels of an image, returning them as a FeatureCollection. Each feature will have 1 property per band in the input image. Note that the default behavior is to drop features that intersect masked pixels, which result in null-valued properties (see dropNulls argument).\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|\n| Image.sample`(`*region* `, `*scale* `, `*projection* `, `*factor* `, `*numPixels* `, `*seed* `, `*dropNulls* `, `*tileScale* `, `*geometries*`)` | FeatureCollection |\n\n| Argument | Type | Details |\n|---------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `image` | Image | The image to sample. |\n| `region` | Geometry, default: null | The region to sample from. If unspecified, uses the image's whole footprint. |\n| `scale` | Float, default: null | A nominal scale in meters of the projection to sample in. |\n| `projection` | Projection, default: null | The projection in which to sample. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. |\n| `factor` | Float, default: null | A subsampling factor, within (0, 1\\]. If specified, 'numPixels' must not be specified. Defaults to no subsampling. |\n| `numPixels` | Long, default: null | The approximate number of pixels to sample. If specified, 'factor' must not be specified. |\n| `seed` | Integer, default: 0 | A randomization seed to use for subsampling. |\n| `dropNulls` | Boolean, default: true | Post filter the result to drop features that have null-valued properties. |\n| `tileScale` | Float, default: 1 | A scaling factor used to reduce aggregation tile size; using a larger tileScale (e.g., 2 or 4) may enable computations that run out of memory with the default. |\n| `geometries` | Boolean, default: false | If true, adds the center of the sampled pixel as the geometry property of the output feature. Otherwise, geometries will be omitted (saving memory). |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Demonstrate extracting pixels from an image as features with\n// ee.Image.sample(), and show how the features are aligned with the pixels.\n\n// An image with one band of elevation data.\nvar image = ee.Image('CGIAR/SRTM90_V4');\nvar VIS_MIN = 1620;\nvar VIS_MAX = 1650;\nMap.addLayer(image, {min: VIS_MIN, max: VIS_MAX}, 'SRTM');\n\n// Region to sample.\nvar region = ee.Geometry.Polygon(\n [[[-110.006, 40.002],\n [-110.006, 39.999],\n [-109.995, 39.999],\n [-109.995, 40.002]]], null, false);\n// Show region on the map.\nMap.setCenter(-110, 40, 16);\nMap.addLayer(ee.FeatureCollection([region]).style({\"color\": \"00FF0022\"}));\n\n// Perform sampling; convert image pixels to features.\nvar samples = image.sample({\n region: region,\n\n // Default (false) is no geometries in the output.\n // When set to true, each feature has a Point geometry at the center of the\n // image pixel.\n geometries: true,\n\n // The scale is not specified, so the resolution of the image will be used,\n // and there is a feature for every pixel. If we give a scale parameter, the\n // image will be resampled and there will be more or fewer features.\n //\n // scale: 200,\n});\n\n// Visualize sample data using ee.FeatureCollection.style().\nvar styled = samples\n .map(function (feature) {\n return feature.set('style', {\n pointSize: feature.getNumber('elevation').unitScale(VIS_MIN, VIS_MAX)\n .multiply(15),\n });\n })\n .style({\n color: '000000FF',\n fillColor: '00000000',\n styleProperty: 'style',\n neighborhood: 6, // increase to correctly draw large points\n });\nMap.addLayer(styled);\n\n// Each sample feature has a point geometry and a property named 'elevation'\n// corresponding to the band named 'elevation' of the image. If there are\n// multiple bands they will become multiple properties. This will print:\n//\n// geometry: Point (-110.01, 40.00)\n// properties:\n// elevation: 1639\nprint(samples.first());\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Demonstrate extracting pixels from an image as features with\n# ee.Image.sample(), and show how the features are aligned with the pixels.\n\n# An image with one band of elevation data.\nimage = ee.Image('CGIAR/SRTM90_V4')\nvis_min = 1620\nvis_max = 1650\nm = geemap.Map()\nm.add_layer(image, {'min': vis_min, 'max': vis_max}, 'SRTM')\n\n# Region to sample.\nregion = ee.Geometry.Polygon(\n [[\n [-110.006, 40.002],\n [-110.006, 39.999],\n [-109.995, 39.999],\n [-109.995, 40.002],\n ]],\n None,\n False,\n)\n# Show region on the map.\nm.set_center(-110, 40, 16)\n\nm.add_layer(ee.FeatureCollection([region]).style(color='00FF0022'))\n\n# Perform sampling convert image pixels to features.\nsamples = image.sample(\n region=region,\n # Default (False) is no geometries in the output.\n # When set to True, each feature has a Point geometry at the center of the\n # image pixel.\n geometries=True,\n # The scale is not specified, so the resolution of the image will be used,\n # and there is a feature for every pixel. If we give a scale parameter, the\n # image will be resampled and there will be more or fewer features.\n #\n # scale=200,\n)\n\n\ndef scale_point_size(feature):\n elevation = feature.getNumber('elevation')\n point_size = elevation.unitScale(vis_min, vis_max).multiply(15)\n feature.set('style', {'pointSize': point_size})\n return feature\n\n\n# Visualize sample data using ee.FeatureCollection.style().\nstyled = samples.map(scale_point_size).style(\n color='000000FF',\n fillColor='00000000',\n styleProperty='style',\n neighborhood=6, # increase to correctly draw large points\n)\nm.add_layer(styled)\ndisplay(m)\n\n# Each sample feature has a point geometry and a property named 'elevation'\n# corresponding to the band named 'elevation' of the image. If there are\n# multiple bands they will become multiple properties. This will print:\n#\n# geometry: Point (-110.01, 40.00)\n# properties:\n# elevation: 1639\ndisplay(samples.first())\n```"]]