Anuncio: Todos los proyectos no comerciales registrados para usar Earth Engine antes del
15 de abril de 2025 deben
verificar su elegibilidad no comercial para mantener el acceso a Earth Engine.
ee.Image.sampleRegions
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Convierte cada píxel de una imagen (en una escala determinada) que interseca una o más regiones en un objeto Feature y los devuelve como un objeto FeatureCollection. Cada atributo de salida tendrá una propiedad por banda de la imagen de entrada, así como las propiedades especificadas que se copiaron del atributo de entrada.
Ten en cuenta que las geometrías se ajustarán a los centros de los píxeles.
Uso | Muestra |
---|
Image.sampleRegions(collection, properties, scale, projection, tileScale, geometries) | FeatureCollection |
Argumento | Tipo | Detalles |
---|
esta: image | Imagen | Es la imagen de la que se tomará la muestra. |
collection | FeatureCollection | Son las regiones para las que se tomarán muestras. |
properties | Lista, valor predeterminado: null | Es la lista de propiedades que se copiarán de cada atributo de entrada. El valor predeterminado son todas las propiedades que no son del sistema. |
scale | Número de punto flotante, valor predeterminado: nulo | Es una escala nominal en metros de la proyección en la que se debe tomar la muestra. Si no se especifica, se usa la escala de la primera banda de la imagen. |
projection | Proyección, valor predeterminado: nulo | Es la proyección en la que se tomará la muestra. Si no se especifica, se usa la proyección de la primera banda de la imagen. Si se especifica además de la escala, se ajusta a la escala especificada. |
tileScale | Número de punto flotante, valor predeterminado: 1 | Es un factor de ajuste que se usa para reducir el tamaño de la segmentación de agregación. Si se usa un tileScale más grande (p. ej., 2 o 4) puede habilitar cálculos que se agotan de memoria con la configuración predeterminada. |
geometries | Booleano, valor predeterminado: falso | Si es verdadero, los resultados incluirán una geometría de punto por píxel muestreado. De lo contrario, se omitirán las geometrías (lo que ahorra memoria). |
Ejemplos
Editor de código (JavaScript)
// A Sentinel-2 surface reflectance image.
var img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG');
Map.setCenter(-122.503881, 37.765588, 18);
Map.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 4500}, 'img');
// A feature collection with two polygon regions each intersecting 36
// pixels at 10 m scale.
var fcPolygon = ee.FeatureCollection([
ee.Feature(ee.Geometry.Rectangle(
-122.50620929, 37.76502806, -122.50552264, 37.76556663), {id: 0}),
ee.Feature(ee.Geometry.Rectangle(
-122.50530270, 37.76565568, -122.50460533, 37.76619425), {id: 1})
]);
Map.addLayer(fcPolygon, {color: 'yellow'}, 'fcPolygon');
var fcPolygonSamp = img.sampleRegions({
collection: fcPolygon,
scale: 10,
geometries: true
});
// Note that 7 pixels are missing from the sample. If a pixel contains a masked
// band value it will be excluded from the sample. In this case, the TCI_B band
// is masked for each unsampled pixel.
print('A feature per pixel (at given scale) in each region', fcPolygonSamp);
Map.addLayer(fcPolygonSamp, {color: 'purple'}, 'fcPolygonSamp');
// A feature collection with two points intersecting two different pixels.
// This example is included to show the behavior for point geometries. In
// practice, if the feature collection is all points, ee.Image.reduceRegions
// should be used instead to save memory.
var fcPoint = ee.FeatureCollection([
ee.Feature(ee.Geometry.Point([-122.50309256, 37.76605006]), {id: 0}),
ee.Feature(ee.Geometry.Point([-122.50344661, 37.76560903]), {id: 1})
]);
Map.addLayer(fcPoint, {color: 'cyan'}, 'fcPoint');
var fcPointSamp = img.sampleRegions({
collection: fcPoint,
scale: 10
});
print('A feature per point', fcPointSamp);
Configuración de Python
Consulta la página
Entorno de Python para obtener información sobre la API de Python y el uso de geemap
para el desarrollo interactivo.
import ee
import geemap.core as geemap
Colab (Python)
# A Sentinel-2 surface reflectance image.
img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')
m = geemap.Map()
m.set_center(-122.503881, 37.765588, 18)
m.add_layer(
img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 4500}, 'img'
)
display(m)
# A feature collection with two polygon regions each intersecting 36
# pixels at 10 m scale.
fc_polygon = ee.FeatureCollection([
ee.Feature(
ee.Geometry.Rectangle(
-122.50620929, 37.76502806, -122.50552264, 37.76556663
),
{'id': 0},
),
ee.Feature(
ee.Geometry.Rectangle(
-122.50530270, 37.76565568, -122.50460533, 37.76619425
),
{'id': 1},
),
])
m.add_layer(fc_polygon, {'color': 'yellow'}, 'fc_polygon')
fc_polygon_samp = img.sampleRegions(
collection=fc_polygon, scale=10, geometries=True
)
# Note that 7 pixels are missing from the sample. If a pixel contains a masked
# band value it will be excluded from the sample. In this case, the TCI_B band
# is masked for each unsampled pixel.
display('A feature per pixel (at given scale) in each region', fc_polygon_samp)
m.add_layer(fc_polygon_samp, {'color': 'purple'}, 'fc_polygon_samp')
# A feature collection with two points intersecting two different pixels.
# This example is included to show the behavior for point geometries. In
# practice, if the feature collection is all points, ee.Image.reduceRegions
# should be used instead to save memory.
fc_point = ee.FeatureCollection([
ee.Feature(ee.Geometry.Point([-122.50309256, 37.76605006]), {'id': 0}),
ee.Feature(ee.Geometry.Point([-122.50344661, 37.76560903]), {'id': 1}),
])
m.add_layer(fc_point, {'color': 'cyan'}, 'fc_point')
fc_point_samp = img.sampleRegions(collection=fc_point, scale=10)
display('A feature per point', fc_point_samp)
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2025-07-26 (UTC)
[null,null,["Última actualización: 2025-07-26 (UTC)"],[[["\u003cp\u003e\u003ccode\u003eImage.sampleRegions\u003c/code\u003e extracts pixel values from an image within specified regions, returning them as a FeatureCollection.\u003c/p\u003e\n"],["\u003cp\u003eEach output feature contains the band values of the input image for each sampled pixel, along with properties from the input features.\u003c/p\u003e\n"],["\u003cp\u003eGeometries are snapped to pixel centers, and you can control the sampling scale and projection.\u003c/p\u003e\n"],["\u003cp\u003eThe function provides options to include point geometries and adjust the tile scale for memory management.\u003c/p\u003e\n"],["\u003cp\u003eIf the input is a FeatureCollection of points, \u003ccode\u003eee.Image.reduceRegions\u003c/code\u003e is generally recommended for better memory efficiency.\u003c/p\u003e\n"]]],["The `Image.sampleRegions` method converts image pixels intersecting specified regions into a `FeatureCollection`. Each output feature contains properties from the input image bands and any designated input feature properties. Geometries are snapped to pixel centers. The sampling scale and projection can be specified; otherwise, the image's first band defaults are used. Optionally, geometries of the sampled pixels can be included, and tile scaling can be used for memory management.\n"],null,["# ee.Image.sampleRegions\n\nConverts each pixel of an image (at a given scale) that intersects one or more regions to a Feature, returning them as a FeatureCollection. Each output feature will have one property per band of the input image, as well as any specified properties copied from the input feature.\n\n\u003cbr /\u003e\n\nNote that geometries will be snapped to pixel centers.\n\n| Usage | Returns |\n|-----------------------------------------------------------------------------------------------------------------|-------------------|\n| Image.sampleRegions`(collection, `*properties* `, `*scale* `, `*projection* `, `*tileScale* `, `*geometries*`)` | FeatureCollection |\n\n| Argument | Type | Details |\n|---------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `image` | Image | The image to sample. |\n| `collection` | FeatureCollection | The regions to sample over. |\n| `properties` | List, default: null | The list of properties to copy from each input feature. Defaults to all non-system properties. |\n| `scale` | Float, default: null | A nominal scale in meters of the projection to sample in. If unspecified, the scale of the image's first band is used. |\n| `projection` | Projection, default: null | The projection in which to sample. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. |\n| `tileScale` | Float, default: 1 | A scaling factor used to reduce aggregation tile size; using a larger tileScale (e.g., 2 or 4) may enable computations that run out of memory with the default. |\n| `geometries` | Boolean, default: false | If true, the results will include a point geometry per sampled pixel. Otherwise, geometries will be omitted (saving memory). |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A Sentinel-2 surface reflectance image.\nvar img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG');\nMap.setCenter(-122.503881, 37.765588, 18);\nMap.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 4500}, 'img');\n\n// A feature collection with two polygon regions each intersecting 36\n// pixels at 10 m scale.\nvar fcPolygon = ee.FeatureCollection([\n ee.Feature(ee.Geometry.Rectangle(\n -122.50620929, 37.76502806, -122.50552264, 37.76556663), {id: 0}),\n ee.Feature(ee.Geometry.Rectangle(\n -122.50530270, 37.76565568, -122.50460533, 37.76619425), {id: 1})\n]);\nMap.addLayer(fcPolygon, {color: 'yellow'}, 'fcPolygon');\n\nvar fcPolygonSamp = img.sampleRegions({\n collection: fcPolygon,\n scale: 10,\n geometries: true\n});\n// Note that 7 pixels are missing from the sample. If a pixel contains a masked\n// band value it will be excluded from the sample. In this case, the TCI_B band\n// is masked for each unsampled pixel.\nprint('A feature per pixel (at given scale) in each region', fcPolygonSamp);\nMap.addLayer(fcPolygonSamp, {color: 'purple'}, 'fcPolygonSamp');\n\n// A feature collection with two points intersecting two different pixels.\n// This example is included to show the behavior for point geometries. In\n// practice, if the feature collection is all points, ee.Image.reduceRegions\n// should be used instead to save memory.\nvar fcPoint = ee.FeatureCollection([\n ee.Feature(ee.Geometry.Point([-122.50309256, 37.76605006]), {id: 0}),\n ee.Feature(ee.Geometry.Point([-122.50344661, 37.76560903]), {id: 1})\n]);\nMap.addLayer(fcPoint, {color: 'cyan'}, 'fcPoint');\n\nvar fcPointSamp = img.sampleRegions({\n collection: fcPoint,\n scale: 10\n});\nprint('A feature per point', fcPointSamp);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# A Sentinel-2 surface reflectance image.\nimg = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')\nm = geemap.Map()\nm.set_center(-122.503881, 37.765588, 18)\nm.add_layer(\n img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 4500}, 'img'\n)\ndisplay(m)\n\n# A feature collection with two polygon regions each intersecting 36\n# pixels at 10 m scale.\nfc_polygon = ee.FeatureCollection([\n ee.Feature(\n ee.Geometry.Rectangle(\n -122.50620929, 37.76502806, -122.50552264, 37.76556663\n ),\n {'id': 0},\n ),\n ee.Feature(\n ee.Geometry.Rectangle(\n -122.50530270, 37.76565568, -122.50460533, 37.76619425\n ),\n {'id': 1},\n ),\n])\nm.add_layer(fc_polygon, {'color': 'yellow'}, 'fc_polygon')\n\nfc_polygon_samp = img.sampleRegions(\n collection=fc_polygon, scale=10, geometries=True\n)\n# Note that 7 pixels are missing from the sample. If a pixel contains a masked\n# band value it will be excluded from the sample. In this case, the TCI_B band\n# is masked for each unsampled pixel.\ndisplay('A feature per pixel (at given scale) in each region', fc_polygon_samp)\nm.add_layer(fc_polygon_samp, {'color': 'purple'}, 'fc_polygon_samp')\n\n# A feature collection with two points intersecting two different pixels.\n# This example is included to show the behavior for point geometries. In\n# practice, if the feature collection is all points, ee.Image.reduceRegions\n# should be used instead to save memory.\nfc_point = ee.FeatureCollection([\n ee.Feature(ee.Geometry.Point([-122.50309256, 37.76605006]), {'id': 0}),\n ee.Feature(ee.Geometry.Point([-122.50344661, 37.76560903]), {'id': 1}),\n])\nm.add_layer(fc_point, {'color': 'cyan'}, 'fc_point')\n\nfc_point_samp = img.sampleRegions(collection=fc_point, scale=10)\ndisplay('A feature per point', fc_point_samp)\n```"]]