Anuncio: Todos los proyectos no comerciales registrados para usar Earth Engine antes del
15 de abril de 2025 deben
verificar su elegibilidad no comercial para mantener el acceso a Earth Engine.
ee.ImageCollection.aggregate_count
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Agrega una propiedad determinada de los objetos de una colección y calcula la cantidad de valores no nulos de la propiedad.
Uso | Muestra |
---|
ImageCollection.aggregate_count(property) | Número |
Argumento | Tipo | Detalles |
---|
esta: collection | FeatureCollection | Es la colección para agregar. |
property | String | Es la propiedad que se usará de cada elemento de la colección. |
Ejemplos
Editor de código (JavaScript)
// A Lansat 8 TOA image collection for a specific year and location.
var col = ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA")
.filterBounds(ee.Geometry.Point([-122.073, 37.188]))
.filterDate('2018', '2019');
// An image property of interest, percent cloud cover in this case.
var prop = 'CLOUD_COVER';
// Use ee.ImageCollection.aggregate_* functions to fetch information about
// values of a selected property across all images in the collection. For
// example, produce a list of all values, get counts, and calculate statistics.
print('List of property values', col.aggregate_array(prop));
print('Count of property values', col.aggregate_count(prop));
print('Count of distinct property values', col.aggregate_count_distinct(prop));
print('First collection element property value', col.aggregate_first(prop));
print('Histogram of property values', col.aggregate_histogram(prop));
print('Min of property values', col.aggregate_min(prop));
print('Max of property values', col.aggregate_max(prop));
// The following methods are applicable to numerical properties only.
print('Mean of property values', col.aggregate_mean(prop));
print('Sum of property values', col.aggregate_sum(prop));
print('Product of property values', col.aggregate_product(prop));
print('Std dev (sample) of property values', col.aggregate_sample_sd(prop));
print('Variance (sample) of property values', col.aggregate_sample_var(prop));
print('Std dev (total) of property values', col.aggregate_total_sd(prop));
print('Variance (total) of property values', col.aggregate_total_var(prop));
print('Summary stats of property values', col.aggregate_stats(prop));
// Note that if the property is formatted as a string, min and max will
// respectively return the first and last values according to alphanumeric
// order of the property values.
var propString = 'LANDSAT_SCENE_ID';
print('List of property values (string)', col.aggregate_array(propString));
print('Min of property values (string)', col.aggregate_min(propString));
print('Max of property values (string)', col.aggregate_max(propString));
Configuración de Python
Consulta la página
Entorno de Python para obtener información sobre la API de Python y el uso de geemap
para el desarrollo interactivo.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# A Lansat 8 TOA image collection for a specific year and location.
col = ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA").filterBounds(
ee.Geometry.Point([-122.073, 37.188])).filterDate('2018', '2019')
# An image property of interest, percent cloud cover in this case.
prop = 'CLOUD_COVER'
# Use ee.ImageCollection.aggregate_* functions to fetch information about
# values of a selected property across all images in the collection. For
# example, produce a list of all values, get counts, and calculate statistics.
print('List of property values:', col.aggregate_array(prop).getInfo())
print('Count of property values:', col.aggregate_count(prop).getInfo())
print('Count of distinct property values:',
col.aggregate_count_distinct(prop).getInfo())
print('First collection element property value:',
col.aggregate_first(prop).getInfo())
print('Histogram of property values:')
pprint(col.aggregate_histogram(prop).getInfo())
print('Min of property values:', col.aggregate_min(prop).getInfo())
print('Max of property values:', col.aggregate_max(prop).getInfo())
# The following methods are applicable to numerical properties only.
print('Mean of property values:', col.aggregate_mean(prop).getInfo())
print('Sum of property values:', col.aggregate_sum(prop).getInfo())
print('Product of property values:', col.aggregate_product(prop).getInfo())
print('Std dev (sample) of property values:',
col.aggregate_sample_sd(prop).getInfo())
print('Variance (sample) of property values:',
col.aggregate_sample_var(prop).getInfo())
print('Std dev (total) of property values:',
col.aggregate_total_sd(prop).getInfo())
print('Variance (total) of property values:',
col.aggregate_total_var(prop).getInfo())
print('Summary stats of property values:')
pprint(col.aggregate_stats(prop).getInfo())
# Note that if the property is formatted as a string, min and max will
# respectively return the first and last values according to alphanumeric
# order of the property values.
prop_string = 'LANDSAT_SCENE_ID'
print('List of property values (string):',
col.aggregate_array(prop_string).getInfo())
print('Min of property values (string):',
col.aggregate_min(prop_string).getInfo())
print('Max of property values (string):',
col.aggregate_max(prop_string).getInfo())
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2025-07-26 (UTC)
[null,null,["Última actualización: 2025-07-26 (UTC)"],[],["The `aggregate_count(property)` function calculates the number of non-null values for a specified property within a FeatureCollection. The function takes the collection and the target property as arguments and returns the count as a number. Other aggregation functions are demonstrated, including `aggregate_array`, `aggregate_count_distinct`, `aggregate_first`, and statistical functions. String properties are also demonstrated for `aggregate_array`, `aggregate_min`, and `aggregate_max`. Both Javascript and Python code examples are provided.\n"],null,[]]