ঘোষণা :
15 এপ্রিল, 2025 এর আগে আর্থ ইঞ্জিন ব্যবহার করার জন্য নিবন্ধিত সমস্ত অবাণিজ্যিক প্রকল্পগুলিকে অবশ্যই আর্থ ইঞ্জিন অ্যাক্সেস বজায় রাখার জন্য
অ-বাণিজ্যিক যোগ্যতা যাচাই করতে হবে।
ee.ImageCollection.aggregate_first
সেভ করা পৃষ্ঠা গুছিয়ে রাখতে 'সংগ্রহ' ব্যবহার করুন
আপনার পছন্দ অনুযায়ী কন্টেন্ট সেভ করুন ও সঠিক বিভাগে রাখুন।
সংগ্রহে থাকা বস্তুর প্রদত্ত সম্পত্তির উপর সমষ্টি, সংগ্রহের প্রথম বস্তুর সম্পত্তির মান গণনা করে।
ব্যবহার | রিটার্নস | ImageCollection. aggregate_first (property) | |
যুক্তি | টাইপ | বিস্তারিত | এই: collection | ফিচার কালেকশন | সংগ্রহ ওভার সমষ্টি. |
property | স্ট্রিং | সংগ্রহের প্রতিটি উপাদান থেকে ব্যবহার করার জন্য সম্পত্তি। |
উদাহরণ
কোড এডিটর (জাভাস্ক্রিপ্ট)
// A Lansat 8 TOA image collection for a specific year and location.
var col = ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA")
.filterBounds(ee.Geometry.Point([-122.073, 37.188]))
.filterDate('2018', '2019');
// An image property of interest, percent cloud cover in this case.
var prop = 'CLOUD_COVER';
// Use ee.ImageCollection.aggregate_* functions to fetch information about
// values of a selected property across all images in the collection. For
// example, produce a list of all values, get counts, and calculate statistics.
print('List of property values', col.aggregate_array(prop));
print('Count of property values', col.aggregate_count(prop));
print('Count of distinct property values', col.aggregate_count_distinct(prop));
print('First collection element property value', col.aggregate_first(prop));
print('Histogram of property values', col.aggregate_histogram(prop));
print('Min of property values', col.aggregate_min(prop));
print('Max of property values', col.aggregate_max(prop));
// The following methods are applicable to numerical properties only.
print('Mean of property values', col.aggregate_mean(prop));
print('Sum of property values', col.aggregate_sum(prop));
print('Product of property values', col.aggregate_product(prop));
print('Std dev (sample) of property values', col.aggregate_sample_sd(prop));
print('Variance (sample) of property values', col.aggregate_sample_var(prop));
print('Std dev (total) of property values', col.aggregate_total_sd(prop));
print('Variance (total) of property values', col.aggregate_total_var(prop));
print('Summary stats of property values', col.aggregate_stats(prop));
// Note that if the property is formatted as a string, min and max will
// respectively return the first and last values according to alphanumeric
// order of the property values.
var propString = 'LANDSAT_SCENE_ID';
print('List of property values (string)', col.aggregate_array(propString));
print('Min of property values (string)', col.aggregate_min(propString));
print('Max of property values (string)', col.aggregate_max(propString));
পাইথন সেটআপ
পাইথন এপিআই এবং ইন্টারেক্টিভ ডেভেলপমেন্টের জন্য geemap
ব্যবহার করার জন্য পাইথন এনভায়রনমেন্ট পৃষ্ঠাটি দেখুন।
import ee
import geemap.core as geemap
Colab (পাইথন)
from pprint import pprint
# A Lansat 8 TOA image collection for a specific year and location.
col = ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA").filterBounds(
ee.Geometry.Point([-122.073, 37.188])).filterDate('2018', '2019')
# An image property of interest, percent cloud cover in this case.
prop = 'CLOUD_COVER'
# Use ee.ImageCollection.aggregate_* functions to fetch information about
# values of a selected property across all images in the collection. For
# example, produce a list of all values, get counts, and calculate statistics.
print('List of property values:', col.aggregate_array(prop).getInfo())
print('Count of property values:', col.aggregate_count(prop).getInfo())
print('Count of distinct property values:',
col.aggregate_count_distinct(prop).getInfo())
print('First collection element property value:',
col.aggregate_first(prop).getInfo())
print('Histogram of property values:')
pprint(col.aggregate_histogram(prop).getInfo())
print('Min of property values:', col.aggregate_min(prop).getInfo())
print('Max of property values:', col.aggregate_max(prop).getInfo())
# The following methods are applicable to numerical properties only.
print('Mean of property values:', col.aggregate_mean(prop).getInfo())
print('Sum of property values:', col.aggregate_sum(prop).getInfo())
print('Product of property values:', col.aggregate_product(prop).getInfo())
print('Std dev (sample) of property values:',
col.aggregate_sample_sd(prop).getInfo())
print('Variance (sample) of property values:',
col.aggregate_sample_var(prop).getInfo())
print('Std dev (total) of property values:',
col.aggregate_total_sd(prop).getInfo())
print('Variance (total) of property values:',
col.aggregate_total_var(prop).getInfo())
print('Summary stats of property values')
pprint(col.aggregate_stats(prop).getInfo())
# Note that if the property is formatted as a string, min and max will
# respectively return the first and last values according to alphanumeric
# order of the property values.
prop_string = 'LANDSAT_SCENE_ID'
print('List of property values (string):',
col.aggregate_array(prop_string).getInfo())
print('Min of property values (string):',
col.aggregate_min(prop_string).getInfo())
print('Max of property values (string):',
col.aggregate_max(prop_string).getInfo())
অন্য কিছু উল্লেখ না করা থাকলে, এই পৃষ্ঠার কন্টেন্ট Creative Commons Attribution 4.0 License-এর অধীনে এবং কোডের নমুনাগুলি Apache 2.0 License-এর অধীনে লাইসেন্স প্রাপ্ত। আরও জানতে, Google Developers সাইট নীতি দেখুন। Java হল Oracle এবং/অথবা তার অ্যাফিলিয়েট সংস্থার রেজিস্টার্ড ট্রেডমার্ক।
2025-07-24 UTC-তে শেষবার আপডেট করা হয়েছে।
[null,null,["2025-07-24 UTC-তে শেষবার আপডেট করা হয়েছে।"],[[["\u003cp\u003e\u003ccode\u003eaggregate_first\u003c/code\u003e calculates the value of a specified property from the first object within an ImageCollection.\u003c/p\u003e\n"],["\u003cp\u003eIt's useful for retrieving a representative property value from a collection.\u003c/p\u003e\n"],["\u003cp\u003eThe property can be any valid property associated with the objects in the collection.\u003c/p\u003e\n"],["\u003cp\u003eThe function returns the value of the specified property from the first element, or null if the collection is empty or the property is not found.\u003c/p\u003e\n"]]],["The content details the use of `aggregate_*` functions on an `ImageCollection`. These functions fetch information about a selected property across all images. Specific actions include retrieving a list of property values, counts, statistics, and histograms. `aggregate_first` retrieves the property value of the collection's first object. Other functions calculate minimum, maximum, mean, sum, product, standard deviation, and variance of numerical properties. String properties min and max values are ordered alphanumerically.\n"],null,["# ee.ImageCollection.aggregate_first\n\nAggregates over a given property of the objects in a collection, calculating the property value of the first object in the collection.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|---------------------------------------------|---------|\n| ImageCollection.aggregate_first`(property)` | |\n\n| Argument | Type | Details |\n|--------------------|-------------------|----------------------------------------------------------|\n| this: `collection` | FeatureCollection | The collection to aggregate over. |\n| `property` | String | The property to use from each element of the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A Lansat 8 TOA image collection for a specific year and location.\nvar col = ee.ImageCollection(\"LANDSAT/LC08/C02/T1_TOA\")\n .filterBounds(ee.Geometry.Point([-122.073, 37.188]))\n .filterDate('2018', '2019');\n\n// An image property of interest, percent cloud cover in this case.\nvar prop = 'CLOUD_COVER';\n\n// Use ee.ImageCollection.aggregate_* functions to fetch information about\n// values of a selected property across all images in the collection. For\n// example, produce a list of all values, get counts, and calculate statistics.\nprint('List of property values', col.aggregate_array(prop));\nprint('Count of property values', col.aggregate_count(prop));\nprint('Count of distinct property values', col.aggregate_count_distinct(prop));\nprint('First collection element property value', col.aggregate_first(prop));\nprint('Histogram of property values', col.aggregate_histogram(prop));\nprint('Min of property values', col.aggregate_min(prop));\nprint('Max of property values', col.aggregate_max(prop));\n\n// The following methods are applicable to numerical properties only.\nprint('Mean of property values', col.aggregate_mean(prop));\nprint('Sum of property values', col.aggregate_sum(prop));\nprint('Product of property values', col.aggregate_product(prop));\nprint('Std dev (sample) of property values', col.aggregate_sample_sd(prop));\nprint('Variance (sample) of property values', col.aggregate_sample_var(prop));\nprint('Std dev (total) of property values', col.aggregate_total_sd(prop));\nprint('Variance (total) of property values', col.aggregate_total_var(prop));\nprint('Summary stats of property values', col.aggregate_stats(prop));\n\n// Note that if the property is formatted as a string, min and max will\n// respectively return the first and last values according to alphanumeric\n// order of the property values.\nvar propString = 'LANDSAT_SCENE_ID';\nprint('List of property values (string)', col.aggregate_array(propString));\nprint('Min of property values (string)', col.aggregate_min(propString));\nprint('Max of property values (string)', col.aggregate_max(propString));\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\n# A Lansat 8 TOA image collection for a specific year and location.\ncol = ee.ImageCollection(\"LANDSAT/LC08/C02/T1_TOA\").filterBounds(\n ee.Geometry.Point([-122.073, 37.188])).filterDate('2018', '2019')\n\n# An image property of interest, percent cloud cover in this case.\nprop = 'CLOUD_COVER'\n\n# Use ee.ImageCollection.aggregate_* functions to fetch information about\n# values of a selected property across all images in the collection. For\n# example, produce a list of all values, get counts, and calculate statistics.\nprint('List of property values:', col.aggregate_array(prop).getInfo())\nprint('Count of property values:', col.aggregate_count(prop).getInfo())\nprint('Count of distinct property values:',\n col.aggregate_count_distinct(prop).getInfo())\nprint('First collection element property value:',\n col.aggregate_first(prop).getInfo())\nprint('Histogram of property values:')\npprint(col.aggregate_histogram(prop).getInfo())\nprint('Min of property values:', col.aggregate_min(prop).getInfo())\nprint('Max of property values:', col.aggregate_max(prop).getInfo())\n\n# The following methods are applicable to numerical properties only.\nprint('Mean of property values:', col.aggregate_mean(prop).getInfo())\nprint('Sum of property values:', col.aggregate_sum(prop).getInfo())\nprint('Product of property values:', col.aggregate_product(prop).getInfo())\nprint('Std dev (sample) of property values:',\n col.aggregate_sample_sd(prop).getInfo())\nprint('Variance (sample) of property values:',\n col.aggregate_sample_var(prop).getInfo())\nprint('Std dev (total) of property values:',\n col.aggregate_total_sd(prop).getInfo())\nprint('Variance (total) of property values:',\n col.aggregate_total_var(prop).getInfo())\nprint('Summary stats of property values')\npprint(col.aggregate_stats(prop).getInfo())\n\n# Note that if the property is formatted as a string, min and max will\n# respectively return the first and last values according to alphanumeric\n# order of the property values.\nprop_string = 'LANDSAT_SCENE_ID'\nprint('List of property values (string):',\n col.aggregate_array(prop_string).getInfo())\nprint('Min of property values (string):',\n col.aggregate_min(prop_string).getInfo())\nprint('Max of property values (string):',\n col.aggregate_max(prop_string).getInfo())\n```"]]