ee.ImageCollection.fromImages
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Renvoie la collection d'images contenant les images spécifiées.
Utilisation | Renvoie |
---|
ee.ImageCollection.fromImages(images) | ImageCollection |
Argument | Type | Détails |
---|
images | Liste | Images à inclure dans la collection. |
Exemples
Éditeur de code (JavaScript)
// A series of images.
var img1 = ee.Image(0);
var img2 = ee.Image(1);
var img3 = ee.Image(2);
// Convert the list of images into an image collection.
var col = ee.ImageCollection.fromImages([img1, img2, img3]);
print('Collection from list of images', col);
// The ee.ImageCollection.fromImages function is intended to coerce the image
// list to a collection when the list is an ambiguous, computed object fetched
// from the properties of a server-side object. For instance, a list
// of images retrieved from a ee.Feature property. Here, we set an image
// list as a property of a feature, retrieve it, and convert it to
// a collection. Notice that the ee.ImageCollection constructor fails to coerce
// the image list to a collection, but ee.ImageCollection.fromImages does.
var feature = ee.Feature(null).set('img_list', [img1, img2, img3]);
var ambiguousImgList = feature.get('img_list');
print('Coerced to collection', ee.ImageCollection.fromImages(ambiguousImgList));
print('NOT coerced to collection', ee.ImageCollection(ambiguousImgList));
// A common use case is coercing an image list from a saveAll join to a
// image collection, like in this example of building a collection of mean
// annual NDVI images from a MODIS collection.
var modisCol = ee.ImageCollection('MODIS/006/MOD13A2')
.filterDate('2017', '2021')
.select('NDVI')
.map(function(img) {return img.set('year', img.date().get('year'))});
var distinctYearCol = modisCol.distinct('year');
var joinedCol = ee.Join.saveAll('img_list').apply({
primary: distinctYearCol,
secondary: modisCol,
condition: ee.Filter.equals({'leftField': 'year', 'rightField': 'year'})
});
var annualNdviMean = joinedCol.map(function(img) {
return ee.ImageCollection.fromImages(img.get('img_list')).mean()
.copyProperties(img, ['year']);
});
print('Mean annual NDVI collection', annualNdviMean);
Configuration de Python
Consultez la page
Environnement Python pour en savoir plus sur l'API Python et sur l'utilisation de geemap
pour le développement interactif.
import ee
import geemap.core as geemap
Colab (Python)
# A series of images.
img1 = ee.Image(0)
img2 = ee.Image(1)
img3 = ee.Image(2)
# Convert the list of images into an image collection.
col = ee.ImageCollection.fromImages([img1, img2, img3])
print('Collection from list of images:', col.getInfo())
# The ee.ImageCollection.fromImages function is intended to coerce the image
# list to a collection when the list is an ambiguous, computed object fetched
# from the properties of a server-side object. For instance, a list
# of images retrieved from a ee.Feature property. Here, we set an image
# list as a property of a feature, retrieve it, and convert it to
# a collection. Notice that the ee.ImageCollection constructor fails to coerce
# the image list to a collection, but ee.ImageCollection.fromImages does.
feature = ee.Feature(None).set('img_list', [img1, img2, img3])
ambiguous_img_list = feature.get('img_list')
print(
'Coerced to collection:',
ee.ImageCollection.fromImages(ambiguous_img_list).getInfo(),
)
print(
'NOT coerced to collection:',
ee.ImageCollection(ambiguous_img_list).getInfo(),
)
# A common use case is coercing an image list from a saveAll join to a
# image collection, like in this example of building a collection of mean
# annual NDVI images from a MODIS collection.
modis_col = (
ee.ImageCollection('MODIS/006/MOD13A2')
.filterDate('2017', '2021')
.select('NDVI')
.map(lambda img: img.set('year', img.date().get('year')))
)
distinct_year_col = modis_col.distinct('year')
joined_col = ee.Join.saveAll('img_list').apply(
primary=distinct_year_col,
secondary=modis_col,
condition=ee.Filter.equals(leftField='year', rightField='year'),
)
annual_ndvi_mean = joined_col.map(
lambda img: ee.ImageCollection.fromImages(img.get('img_list'))
.mean()
.copyProperties(img, ['year'])
)
print('Mean annual NDVI collection:', annual_ndvi_mean.getInfo())
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[[["\u003cp\u003e\u003ccode\u003eee.ImageCollection.fromImages()\u003c/code\u003e creates an \u003ccode\u003eImageCollection\u003c/code\u003e from a list of \u003ccode\u003eee.Image\u003c/code\u003e objects.\u003c/p\u003e\n"],["\u003cp\u003eThis function is particularly useful for converting ambiguous, server-side image lists into \u003ccode\u003eImageCollection\u003c/code\u003e objects.\u003c/p\u003e\n"],["\u003cp\u003eA common use case is processing image lists obtained from \u003ccode\u003eee.Join.saveAll()\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eee.ImageCollection.fromImages()\u003c/code\u003e enables efficient manipulation and analysis of image data within Earth Engine.\u003c/p\u003e\n"]]],["`ee.ImageCollection.fromImages(images)` converts a list of images into an ImageCollection. This function is crucial for handling ambiguous, computed image lists, like those retrieved from server-side object properties. It successfully coerces image lists into collections, unlike the standard `ee.ImageCollection` constructor. A common use case is processing lists generated by `ee.Join.saveAll`, demonstrated by building a collection of mean annual NDVI images from MODIS data, efficiently grouping images and calculating yearly averages.\n"],null,["# ee.ImageCollection.fromImages\n\nReturns the image collection containing the given images.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-----------------------------------------|-----------------|\n| `ee.ImageCollection.fromImages(images)` | ImageCollection |\n\n| Argument | Type | Details |\n|----------|------|------------------------------------------|\n| `images` | List | The images to include in the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A series of images.\nvar img1 = ee.Image(0);\nvar img2 = ee.Image(1);\nvar img3 = ee.Image(2);\n\n// Convert the list of images into an image collection.\nvar col = ee.ImageCollection.fromImages([img1, img2, img3]);\nprint('Collection from list of images', col);\n\n// The ee.ImageCollection.fromImages function is intended to coerce the image\n// list to a collection when the list is an ambiguous, computed object fetched\n// from the properties of a server-side object. For instance, a list\n// of images retrieved from a ee.Feature property. Here, we set an image\n// list as a property of a feature, retrieve it, and convert it to\n// a collection. Notice that the ee.ImageCollection constructor fails to coerce\n// the image list to a collection, but ee.ImageCollection.fromImages does.\nvar feature = ee.Feature(null).set('img_list', [img1, img2, img3]);\nvar ambiguousImgList = feature.get('img_list');\nprint('Coerced to collection', ee.ImageCollection.fromImages(ambiguousImgList));\nprint('NOT coerced to collection', ee.ImageCollection(ambiguousImgList));\n\n// A common use case is coercing an image list from a saveAll join to a\n// image collection, like in this example of building a collection of mean\n// annual NDVI images from a MODIS collection.\nvar modisCol = ee.ImageCollection('MODIS/006/MOD13A2')\n .filterDate('2017', '2021')\n .select('NDVI')\n .map(function(img) {return img.set('year', img.date().get('year'))});\n\nvar distinctYearCol = modisCol.distinct('year');\n\nvar joinedCol = ee.Join.saveAll('img_list').apply({\n primary: distinctYearCol,\n secondary: modisCol,\n condition: ee.Filter.equals({'leftField': 'year', 'rightField': 'year'})\n});\n\nvar annualNdviMean = joinedCol.map(function(img) {\n return ee.ImageCollection.fromImages(img.get('img_list')).mean()\n .copyProperties(img, ['year']);\n});\nprint('Mean annual NDVI collection', annualNdviMean);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# A series of images.\nimg1 = ee.Image(0)\nimg2 = ee.Image(1)\nimg3 = ee.Image(2)\n\n# Convert the list of images into an image collection.\ncol = ee.ImageCollection.fromImages([img1, img2, img3])\nprint('Collection from list of images:', col.getInfo())\n\n# The ee.ImageCollection.fromImages function is intended to coerce the image\n# list to a collection when the list is an ambiguous, computed object fetched\n# from the properties of a server-side object. For instance, a list\n# of images retrieved from a ee.Feature property. Here, we set an image\n# list as a property of a feature, retrieve it, and convert it to\n# a collection. Notice that the ee.ImageCollection constructor fails to coerce\n# the image list to a collection, but ee.ImageCollection.fromImages does.\nfeature = ee.Feature(None).set('img_list', [img1, img2, img3])\nambiguous_img_list = feature.get('img_list')\nprint(\n 'Coerced to collection:',\n ee.ImageCollection.fromImages(ambiguous_img_list).getInfo(),\n)\nprint(\n 'NOT coerced to collection:',\n ee.ImageCollection(ambiguous_img_list).getInfo(),\n)\n\n# A common use case is coercing an image list from a saveAll join to a\n# image collection, like in this example of building a collection of mean\n# annual NDVI images from a MODIS collection.\nmodis_col = (\n ee.ImageCollection('MODIS/006/MOD13A2')\n .filterDate('2017', '2021')\n .select('NDVI')\n .map(lambda img: img.set('year', img.date().get('year')))\n)\n\ndistinct_year_col = modis_col.distinct('year')\n\njoined_col = ee.Join.saveAll('img_list').apply(\n primary=distinct_year_col,\n secondary=modis_col,\n condition=ee.Filter.equals(leftField='year', rightField='year'),\n)\n\nannual_ndvi_mean = joined_col.map(\n lambda img: ee.ImageCollection.fromImages(img.get('img_list'))\n .mean()\n .copyProperties(img, ['year'])\n)\nprint('Mean annual NDVI collection:', annual_ndvi_mean.getInfo())\n```"]]