Pengumuman: Semua project nonkomersial yang terdaftar untuk menggunakan Earth Engine sebelum
15 April 2025 harus
memverifikasi kelayakan nonkomersial untuk mempertahankan akses Earth Engine.
ee.ImageCollection.fromImages
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Menampilkan koleksi gambar yang berisi gambar tertentu.
Penggunaan | Hasil |
---|
ee.ImageCollection.fromImages(images) | ImageCollection |
Argumen | Jenis | Detail |
---|
images | Daftar | Gambar yang akan disertakan dalam koleksi. |
Contoh
Code Editor (JavaScript)
// A series of images.
var img1 = ee.Image(0);
var img2 = ee.Image(1);
var img3 = ee.Image(2);
// Convert the list of images into an image collection.
var col = ee.ImageCollection.fromImages([img1, img2, img3]);
print('Collection from list of images', col);
// The ee.ImageCollection.fromImages function is intended to coerce the image
// list to a collection when the list is an ambiguous, computed object fetched
// from the properties of a server-side object. For instance, a list
// of images retrieved from a ee.Feature property. Here, we set an image
// list as a property of a feature, retrieve it, and convert it to
// a collection. Notice that the ee.ImageCollection constructor fails to coerce
// the image list to a collection, but ee.ImageCollection.fromImages does.
var feature = ee.Feature(null).set('img_list', [img1, img2, img3]);
var ambiguousImgList = feature.get('img_list');
print('Coerced to collection', ee.ImageCollection.fromImages(ambiguousImgList));
print('NOT coerced to collection', ee.ImageCollection(ambiguousImgList));
// A common use case is coercing an image list from a saveAll join to a
// image collection, like in this example of building a collection of mean
// annual NDVI images from a MODIS collection.
var modisCol = ee.ImageCollection('MODIS/006/MOD13A2')
.filterDate('2017', '2021')
.select('NDVI')
.map(function(img) {return img.set('year', img.date().get('year'))});
var distinctYearCol = modisCol.distinct('year');
var joinedCol = ee.Join.saveAll('img_list').apply({
primary: distinctYearCol,
secondary: modisCol,
condition: ee.Filter.equals({'leftField': 'year', 'rightField': 'year'})
});
var annualNdviMean = joinedCol.map(function(img) {
return ee.ImageCollection.fromImages(img.get('img_list')).mean()
.copyProperties(img, ['year']);
});
print('Mean annual NDVI collection', annualNdviMean);
Penyiapan Python
Lihat halaman
Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan
geemap
untuk pengembangan interaktif.
import ee
import geemap.core as geemap
Colab (Python)
# A series of images.
img1 = ee.Image(0)
img2 = ee.Image(1)
img3 = ee.Image(2)
# Convert the list of images into an image collection.
col = ee.ImageCollection.fromImages([img1, img2, img3])
print('Collection from list of images:', col.getInfo())
# The ee.ImageCollection.fromImages function is intended to coerce the image
# list to a collection when the list is an ambiguous, computed object fetched
# from the properties of a server-side object. For instance, a list
# of images retrieved from a ee.Feature property. Here, we set an image
# list as a property of a feature, retrieve it, and convert it to
# a collection. Notice that the ee.ImageCollection constructor fails to coerce
# the image list to a collection, but ee.ImageCollection.fromImages does.
feature = ee.Feature(None).set('img_list', [img1, img2, img3])
ambiguous_img_list = feature.get('img_list')
print(
'Coerced to collection:',
ee.ImageCollection.fromImages(ambiguous_img_list).getInfo(),
)
print(
'NOT coerced to collection:',
ee.ImageCollection(ambiguous_img_list).getInfo(),
)
# A common use case is coercing an image list from a saveAll join to a
# image collection, like in this example of building a collection of mean
# annual NDVI images from a MODIS collection.
modis_col = (
ee.ImageCollection('MODIS/006/MOD13A2')
.filterDate('2017', '2021')
.select('NDVI')
.map(lambda img: img.set('year', img.date().get('year')))
)
distinct_year_col = modis_col.distinct('year')
joined_col = ee.Join.saveAll('img_list').apply(
primary=distinct_year_col,
secondary=modis_col,
condition=ee.Filter.equals(leftField='year', rightField='year'),
)
annual_ndvi_mean = joined_col.map(
lambda img: ee.ImageCollection.fromImages(img.get('img_list'))
.mean()
.copyProperties(img, ['year'])
)
print('Mean annual NDVI collection:', annual_ndvi_mean.getInfo())
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[[["\u003cp\u003e\u003ccode\u003eee.ImageCollection.fromImages()\u003c/code\u003e creates an \u003ccode\u003eImageCollection\u003c/code\u003e from a list of \u003ccode\u003eee.Image\u003c/code\u003e objects.\u003c/p\u003e\n"],["\u003cp\u003eThis function is particularly useful for converting ambiguous, server-side image lists into \u003ccode\u003eImageCollection\u003c/code\u003e objects.\u003c/p\u003e\n"],["\u003cp\u003eA common use case is processing image lists obtained from \u003ccode\u003eee.Join.saveAll()\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eee.ImageCollection.fromImages()\u003c/code\u003e enables efficient manipulation and analysis of image data within Earth Engine.\u003c/p\u003e\n"]]],["`ee.ImageCollection.fromImages(images)` converts a list of images into an ImageCollection. This function is crucial for handling ambiguous, computed image lists, like those retrieved from server-side object properties. It successfully coerces image lists into collections, unlike the standard `ee.ImageCollection` constructor. A common use case is processing lists generated by `ee.Join.saveAll`, demonstrated by building a collection of mean annual NDVI images from MODIS data, efficiently grouping images and calculating yearly averages.\n"],null,["# ee.ImageCollection.fromImages\n\nReturns the image collection containing the given images.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-----------------------------------------|-----------------|\n| `ee.ImageCollection.fromImages(images)` | ImageCollection |\n\n| Argument | Type | Details |\n|----------|------|------------------------------------------|\n| `images` | List | The images to include in the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A series of images.\nvar img1 = ee.Image(0);\nvar img2 = ee.Image(1);\nvar img3 = ee.Image(2);\n\n// Convert the list of images into an image collection.\nvar col = ee.ImageCollection.fromImages([img1, img2, img3]);\nprint('Collection from list of images', col);\n\n// The ee.ImageCollection.fromImages function is intended to coerce the image\n// list to a collection when the list is an ambiguous, computed object fetched\n// from the properties of a server-side object. For instance, a list\n// of images retrieved from a ee.Feature property. Here, we set an image\n// list as a property of a feature, retrieve it, and convert it to\n// a collection. Notice that the ee.ImageCollection constructor fails to coerce\n// the image list to a collection, but ee.ImageCollection.fromImages does.\nvar feature = ee.Feature(null).set('img_list', [img1, img2, img3]);\nvar ambiguousImgList = feature.get('img_list');\nprint('Coerced to collection', ee.ImageCollection.fromImages(ambiguousImgList));\nprint('NOT coerced to collection', ee.ImageCollection(ambiguousImgList));\n\n// A common use case is coercing an image list from a saveAll join to a\n// image collection, like in this example of building a collection of mean\n// annual NDVI images from a MODIS collection.\nvar modisCol = ee.ImageCollection('MODIS/006/MOD13A2')\n .filterDate('2017', '2021')\n .select('NDVI')\n .map(function(img) {return img.set('year', img.date().get('year'))});\n\nvar distinctYearCol = modisCol.distinct('year');\n\nvar joinedCol = ee.Join.saveAll('img_list').apply({\n primary: distinctYearCol,\n secondary: modisCol,\n condition: ee.Filter.equals({'leftField': 'year', 'rightField': 'year'})\n});\n\nvar annualNdviMean = joinedCol.map(function(img) {\n return ee.ImageCollection.fromImages(img.get('img_list')).mean()\n .copyProperties(img, ['year']);\n});\nprint('Mean annual NDVI collection', annualNdviMean);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# A series of images.\nimg1 = ee.Image(0)\nimg2 = ee.Image(1)\nimg3 = ee.Image(2)\n\n# Convert the list of images into an image collection.\ncol = ee.ImageCollection.fromImages([img1, img2, img3])\nprint('Collection from list of images:', col.getInfo())\n\n# The ee.ImageCollection.fromImages function is intended to coerce the image\n# list to a collection when the list is an ambiguous, computed object fetched\n# from the properties of a server-side object. For instance, a list\n# of images retrieved from a ee.Feature property. Here, we set an image\n# list as a property of a feature, retrieve it, and convert it to\n# a collection. Notice that the ee.ImageCollection constructor fails to coerce\n# the image list to a collection, but ee.ImageCollection.fromImages does.\nfeature = ee.Feature(None).set('img_list', [img1, img2, img3])\nambiguous_img_list = feature.get('img_list')\nprint(\n 'Coerced to collection:',\n ee.ImageCollection.fromImages(ambiguous_img_list).getInfo(),\n)\nprint(\n 'NOT coerced to collection:',\n ee.ImageCollection(ambiguous_img_list).getInfo(),\n)\n\n# A common use case is coercing an image list from a saveAll join to a\n# image collection, like in this example of building a collection of mean\n# annual NDVI images from a MODIS collection.\nmodis_col = (\n ee.ImageCollection('MODIS/006/MOD13A2')\n .filterDate('2017', '2021')\n .select('NDVI')\n .map(lambda img: img.set('year', img.date().get('year')))\n)\n\ndistinct_year_col = modis_col.distinct('year')\n\njoined_col = ee.Join.saveAll('img_list').apply(\n primary=distinct_year_col,\n secondary=modis_col,\n condition=ee.Filter.equals(leftField='year', rightField='year'),\n)\n\nannual_ndvi_mean = joined_col.map(\n lambda img: ee.ImageCollection.fromImages(img.get('img_list'))\n .mean()\n .copyProperties(img, ['year'])\n)\nprint('Mean annual NDVI collection:', annual_ndvi_mean.getInfo())\n```"]]